
F. DTI - PY AVF Control Numer: AVF-'SR-AF'OR-:38-14

Lfl

N

Ada COPILER
VALIDATION S.....RY RORT:

Certificate Number: 881i2iA.10003
Alsys

AisyCOMP_003, Version 4.1
Zenith Z-248

Completion of On-Site Testing:
21 November 1988

?repared By:
AFNOR

Tour Europe
Cedex 7

F-92080 Paris la Defense

Prepared For:
Ada Joint Program Office

United States Department of D&fense
Washington DC 20301-3081

DTIC
ELECTE

90 05 11 0 11l

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY,

MA' 1 5 " 0 11:3 IT RESEARLCH I HST P. a31

S'- . NCLASSIFIED
jCUAI1V CLASSIFICATION OF THIS PAG1 .e"e, t tert red)

REPORT DOCUMENTATON PAGE UAD VV.VMoS

2. REPOaT ANU05L I. 6OVT ACCESSIO NO. 3. RICIPIINI'S CATALOG Ni05LER

. t L- (e ,wSb,)I$ 5. TYPE OF REPORT & PERIOD COvIED

Ada Compiler Validation Summary RepOrt:Alsys iZ Nov. 1988 to 21 Nov. 1989
lsyCOMP 003, Version 4.1, Zenith Z-248 (Host & Target), S. PLOFORMINGaG. REPORT NUMBER
81121A1 .0003

,* &Uma, . CONTRACT 00 64ANT UUM8ER(s)

AFNOR, Paris, France.

I. PISORMING 08GNIZATIOg O A&EOSS 0. PROGRAM ELEMENT. PROJECT. TASK
ANLA g WUNK UN41 xIj-bEAS

AFNOR, Paris, France.

11. COTROLLING OFF1CI NAMiE AND AORESS 1Z. REPORT DATE
Ada Joint Program Ofice
United States De artment of Defense 1J. MU CUt XA 'L
Washington, DC 20301-3081

14. NOITOA~kG AGENCY NAK4 & ADORLSS(difA'ett from Controllng Office) 15. SECIJRITT CLASS (ofth af , OrU

UN'CLASSIFIFE,
AFNOR, Paris, France. is&5. CSICATIO%/OOW4RA0XNC

N/A
18. DISTRIBUTIONi STATEMENT (of thsReport)

Approved for public release; distribution unlimited.

17. DSTRIBJTIOh STATI.Wht orbi e.nreeB,,l/ock2O S inOt tfrom Repot)

UNCLASSIFIED

1t. SUPMP EkTAPY NOTES

is. IZvkO5 (continue on rtve,z We of neeou.y *sPdidntfy byblIock nnbe r)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20.

Alsys, AlsyCdMP_003, Version 4.1, Paris La Defense, Zerih Z-248 under MS/DOS, Version
3.2 (Host & Target), ACVC 1.10.

00 IM 1473 101:I1 Of I NOV 65 S ONSOL1tE
IJM 7 s,,, *,O2-L,-*1,-50, 1.NCLASSITIED

SECURITY CLASSIFICAION Of IIS PACE (WhenO $ 81flt i
.. = '90 1 1 :34 - PAG£.00I

Ada Compiler Validation Summary Report:

Compiler Name: AlsyCOMP_003, Version 4.1

Certificate Number: 881121A1.10003

Host: Zenith Z-248 under MS/DOS, Version 3.2

Target: Zenith Z-248 under MS/DOS, Version 3.2

Testing Completed 21 November 1988 Using ACVC 1.10

This report has been reviewed and is approved.

AFNOR
Dr Jacqueline Sidi
Tour Europe -

Cedex 7 -

F-92080 Paris la D~fense

Ada Vali-daiio- Organization
Dr. John F. Jramer
Institute for Defense Analyses
Alexandria VA 22311 Accession For

NTIS GRA&I
DTIC TAB Q
Unannounced I]

/ -~Justification

Ada Joint Program Office
Dr. John Solomond By
Director Di trlbut o I n

Department of Defense Availability Codes
Washington DC 20301 -veil ad/or

Dist SpegieJ.

2

OFFICE OF THE DIRECTOR OF
DEFENSE RESEARCH AND ENGINEERING

WASHINGTON, DC 20301

&AT)

MEMORANDUM FOR Director, Directorate of Database Services,
Defense Logistics Agenc y

SUBJECT: Technology Screeniig of Unclassified/Unlimited Reports

Your letter of 2 February 1990 to the Commander, Air Force /4
Systems Command, Air Force Aeronautical Laboratory,
Wright-Patterson Air Force Base stated that the Ada Validation
Summary report for Meridian Software Systems, Inc. contained
technical data that should be denied public disclosure according to
DoD Directive 5230.25

We do not agree with this opinion that the contents of this
particular Ada Validation Summary Report or the contents of the
several hundred of such reports produced each year to document the
conformity testing results of Ada compilers. Ada is not used
exclusively for military applications. The language is an ANSI
Military Standard, a Federal Information Processing Standard, and
an International Standards Organization standard. Compilers are
tested for conformity to the standard as the basis for obtaining an
Ada Joint Program Office certificate of conformity. The results of
this testing are documented in a standard form in all Ada
Validation Summary Reports which the compiler vendor agrees to make
,public as part of his contract with the testing facility.

On 18 Decembei 1985, the Commerce Department issued Part /
379 Technical Data of the Export Administration specifically
listing Ada Programming Support Environments (including compilers)
as items controlled by the Commerce Department. The AJPO complies
with Department of Commerce export control regulations. When
Defense Technical Information Center receives an Ada Validation
Summary Report, which may be produced-byany of the five U.S. and
European Ada Validation Facilities, the content should be made
available to the public.

If you have any further questions, please feel free to contact
the undersigned at (202) 694-0209.

John P. Solomond
Director
Ada Joint Program Office

TABLE OF CON7TENTS

CHAPTER i INTRODUCTION

1.1 PURPOSE J7 THIS VAL:DAT:ON SU-::2ARY REPORT 5
1 USE OF THIS VALIDATION SUY 7ARY REPORT 5
- 3 REFERENCES . 6
..4 DEFINITIOO OF TE MRS . 6
1.5 ACVC TEST CLASSES .7

CHAPTER 2 CONFIGURATION INFORMAT:Ou

2.1 CONF:GURATION :7STED .9
2.2 IMPLEMENTATION CHARACTERISTICS 10

CHAPTER 3 TEST 7NFORNAT:ON

3.1 TEST RESULTS 15
3.2 SUMMARY OF TEST RESULTS BY CLASS 15
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 16
3.4 WITHDRAWN TESTS 16
3.5 INAPPLICABLE TESTS16
3.6 TEST, PROCESSING, AND EVALUATIOb. .ODIF:CATTC
3.7 ADDITIONAL TEST:;NG INFORHATION 20
3.7.1 Prevalidation20
3.7.2 Test :Method.20
3.7.3 Test Site21

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B TEST PARAMETERS

APPENDIX C WITHDRAWN TESTS

APPENDIX D APPENDIX F OF THE Ada STANDARD

3

7NTRODUC-:O'

CHATER I

INTRODUCTIONJ

-his Va-calion Summary Report (VSR) descrio-_s the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/ITL-

STD-1815A. This report expans all technlca- terms useu within it
and thoroughly reports the results of testing tis compiler using the
Ada Compiler ValIdation Capability (ACVC,. An Ada compiler must be

implemented according to the Ada Standard, and any implementation-
dependent features nust conform to the requirements of the Ada
Standard. The Ada Standard must be implemented :-n its entirety, and

ncth ng can be imp!emented that is not in the Standard.

Even though aI validated Ada compilers conform to the Ada Standard,
t must liunderstood that some differences do exist between
implementations. The Ada Standard :ermits some molementaton
dependencies--for example , the maximum length of identifiers or the
maximum va-ues of integer types. Other differences between compilers
resu.l from the characteristics of part icular operating systems,
aardware, or i:rplementation strategies. All the dependencies observed
during the process of testing this comp_Ic are given In this report.

.he :nformation in t zs report is derivec :rom tie test results
pcoduced dur:ng validation testing. The vaildation process includes
sub. ittng a suite of standardized tests, the ACVC, as inputs to an
Ada compiler and evaluating the results. The purpose of validating
to ensure confor:mlty of the compiler to the Ada Standard by testing
that the compiler properly implements legal language constructs and
that it identifies and rejects 1i1ega language constructs. The
testina also identifies behavior that :s i.in,' Lemnentation-dependent but
permitted by the Ada Standard. Six classes of tests are used. These
-ests are designed to perform checks at compile time, at link tme,
and during execution.

4

I11TRODUCTION

i._ PURPOSE OF THIS VAL:DA T:OY SUXXARY REOT

.hs VSR docu.i-nts the :esIts of the validaton testing performed en
an Ada co:mp ~f. -estznq was tattled out for -he following purposes:

_o attempt -o identify any lanquage cons-:iccs sJI oL oy
the conmier that do nor confort to 7 h*n Ada Standard

To attempt to .denztfy any language :orIs7 ucts not supported
by the compiler but required ny the Ada Standard

To determine that the impleientar:on-dependent behavior is
allowed by the Ada Standard

Testing of this compilar was conducted by under the direction of the
AVF according to procedures established)y the Ada Joint ?rograr
Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 21 Hove-tber 1988 at Alsys Inc. in
waltham, USA.

1.2 USE OF THIS VALIDATION SUMMARY REORT

Consistent with the national laws of the originating country, the AVO
Say make full and free publc dsclosure of this report. -n the
Un_:ed States, this is provided :n accordance with the "Freedom of
informat1on Act"(5 U.S.C.#552). The results of this validation apply
only to the computers, operazing systems, and compiler versions
identified in this report.

-he organizations represented on the signature pace of this report do
not represent or warrant that all statements set forth in zhls reoort

are accurate and comp.lete, or that the subiect compiler has no
nonconformiries to the Ada Standard other than those presented.
Copies of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

AFNOR
Tour Europe
cedex 7
F-92080 Paris la Defense

5

!NTRODUCT:OrN

Questions rozardng :hs report or the validation test resulis swould
be directed to the AVF listed above or to:

Ada Validation Organization
institut, for Defense Analyses
3 01 .orth 3eaur;gard Street
Alexandria VA 22311

1. 3 REFERENCES

i. Reference Yanual for the Ada ProgramminLnuAgue, ANSY.IL-
STD-181A, February 1983, and ISO 3632-1987.

2. Ada Compiler Validar-on Procedurds and Gui&elines, Ada Joint
?rocram Office, 1 January 987.

3. Ada Comwiler Va lda ron Canavilizy_ -meenters' Guide,
SofTech, Inc., December !986.

-.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capaz-lity. The set of
Ada programs that tests -he conform:iy of an Ada
compiler to the Ada proqramming language.

Ada Commentary An Ada Commentary contains all information relevant
to the point addressed by a comment on the Ada
Standard. These comments are given a unique
identification number having the for: Ai-ddddd.

Ada Standard ANSI/.IL-STn-l8!5A, February 1933 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible
for conducting compiler validations according to
procedures contained in the Ada Compiler Vaildation
Procedures and Guidelines.

AVO The Ada Validation Organization. The AVO has
oversight authority over all AVF pracz:ces for the
purpose of maintaining a uniform process for
validation of Ada compilers. The AVO provides
administrative and technical support for Ada
validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of
this report, a compier is any language processor,

6

.rNTRODUC::O;

:nclurina cross-co7-i_:s, insa ors, and
interpreters.

a tes- An ACVC test tor which the c or pIer generates a
result that demonstrates no;iconf,,rmzy to -. te Ada
Standard.

Host The computer on which the co.z.iler resides.

7nappacable test An ACVC test that uses features of the anguage
that a co'mpier is not required to support or may
legitimately support :n a way otner than the one
expected by the test.

Passed test An ACVC test for which a cczp: r generators z.e
expeczed result.

Target The computer for which a co.p.r. , _ne ates code.

Test A program that ch-cXs a COOp let s confor:: tV
regarding a partacular feef: or a comb-na ion of

features to the A-.a Stancard. 'n the context of ths
report, zhe term is ised to cesicnate a single test,
which may comprise one or more f:Les.

rtladrawn z. st An ACVC tes: found lo be incorrect and not used to
check conformity to zhr Ada Standard. A test may be
incorrect becaise n has an invali: -est oblective,
fails to meet its test obJect§:e, or contains ailegaL.
or erroneous use f the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is neasured using -he ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class 3 tests ire expected to produce
compilation errors. Class L tests are expected ro produce compilation
or lank errors.

Class A tests check that legal Ada programs ,an be successfully
compiled and executed. There are no exp lacat program components an a
Class A test to check semantics. For example, a Class A test checks
that reserved words of another language (other than those already
reserved in the Ada language) are not treated as reserved words by an
Ada compiler. A Class A test is passed if no errors are detected at
compile tame and the program executes to produce a PASSED me-sage.

7

-::TRDUCTrIoN

s 3 s -s c:: t. a: acc:p _ : ',s - _-,:a- aanq~lacye usage.
-ass 3 -ests ar * t e -'-. . - :s 11 -s c ass Is c. i

anu :he:'sui -n '- -: ays!n 5s 'x. .dto ";erzif that
'r" svnta:. 1, S.-a:::C _ - St s detcted A lass d
-s-. ispassed if e:;z:y :egal. ,zcnst f x a _c, nayns -s

ceeed zy the co::p-Ie .

Class - tests check ha l=gal Ada roqrans can oe correcty CO(, 'y
anc execut c. Each CIass t-st Is seIf-c,cc:';C nc p-ouces r?ASSED, FA:LED, or 10OT A-BPLCAB ""n -tncter~u.tWcA A -' ,'O A P..--;rBLm - . s .] a-.n :'-I r :sui: when

is executed.

Class 3 tests check the compDiazion and executior, caPacites of a
o:.-.o iaer. Since there are no capacity re uIr .ents pIaced a n a

.y the Ada Standard for some -amets--torexample, the
-of ie r t: :entifIers ermtted in a compliatlon or the number :of

units in a iabrary---a complier :nay refusle7- CoomPle a Class % test
and s-- be a conformang compi'er. Therefore, A a Class D test
f ais to compile because toe capacity of the co:n pier as exceeced,
jhe -ts- is classiAfi_ as :-naoplicable. _f a Class 3 test compmles
successfully, at as seif-checkang and produces a PASSED or FAILED
:essage during execution.

Each Class E test is self-checkang and produces a 'OT APPL:CABLE,
PASSZD, or FA:LED message when it is cc.c'- "" and executed. However,
.he Ada Standard per:'7ts an implementazion :t re-ect programs
contain-ng s o. .e features addressed by Class - tests during
ooolatcn. Therefore, a Class test as pass=:i oy a cop:mar f it

os _omn1ed successfully and executes -o uroduce a PASSED nessage, or
t s relected by the comp:ler for an a-Lo;aole reason.

-- ass "tests check zha- incomplete or ailec:.l Ada prDgrams involvnc
...-. :-ie, sz.:arat ey complied un:.s ace detected and not allowed to
execute. Class I tests are co.-iia se.aat-ly ifn:: execution is
at-empted. A Class L test passes if :_t as relected at zn tame--that
as, an attempt to execute the .a:n program .ust generate an error

:nessage before any declarations in the _man program or any units
referenced by the main program are elaborated.

Two library un-ts, the package REPORT and th. procedure CHECK_FILE,
support the seif-checkang features of -_he executable tests. The
package REPORT provides the mechanism by which executable tests
renport PASSED, FAILED, or NOT APPLICABLE results. it also Drovades a
set of identity functions used to d?feat some comapler opt imzatIons
allowed by the Ada Standard that would carcumvent a test ob-;ctive.
The procedure CHECKFLE is used to check the contents of text files
written by some of the Class C tests for chapter 14 of the Ada
Standard. The operation of REPORT and CHECK_FILZ is checked by a set
of executable tests. These tests produce messages that are examined

8

~ttr7F OTcr-'t Oil

7,- 'T h -a : s a r E ' ')e --1t 1 i' C y .. se 1- r ItS a r
c~ co r v., :n e i -'xa t on --s nt c tt:teCc

T>. z~x of :h ss n -E 4o"C fIcw~ :,n-; En-tions -,.Ia:a
in :=c t o -risur- nat S~ .~S are rE IS 02a V" our.<e without,

dif-a o n . 'o.- Exa..,po', zS7. !S' 0' is o y :,I, b)as-c SEt
ra caarac:.,rs, contain S Wi- txm~n lnt o f 72

:. fer?.c : -S , !se S,.- nure ~ i s i, arv p -ac taz ires t hat mnay no-

be s upos - -'-by all- -.l m u a ~ i sn se-aarate -s- Howevver. So-e

e :0 ementatzon-specfc vaues-ror xm-e an eg file name.
A --sr of th v-alues used for -h-s v,.a'--at on is oro-Tued in Append--x

Acompn-er mutcorrect~v -Droress each of -_.I tests in the suite and
d-.ons::rate conformity to the Ada Standard])y either meeting hepass
cr--tef::a g--vEn for the test or ovy s~owing t7iat the -,-s- --s
inrapp.licable to the i.tolernenzazion. The alcattyof a test t:o an

~.D~Oflat~l s considereA ea-ch tit m eiimlietco s

val:da--ed. a tst- that is :,na-olicable 1.or- one VaR:tazon is not
nece-ssari.y inapplicable for a subsequent -a ,:cation. Any test ta
was determaed to contain an illegal language ontut or an
erroneous language construct is w:thdrawn from the. ACVC and,

ta~efoe, s not, used. an testing a compil~er. The tests withdrawn atC
:te :.7e of th'-s validation are given in A'OpEndix D.

9

CONFIGURATION iNFOR:.-A?:Of;

CHA?TER 2

CONFIGURAT:ON .:FORMA:TON

.1 CCNFIGURAT:ON TESTED

The candidate compilation system for thas w;a cdat:on 'gas tested vider
the following configuration:

Compiler: AlsyCOMP_003, Version 4.1

ACVC Vers:on: 1.10

Certificate Number: 8121.0003

Host Computer:

achine: Zenith Z-248

Operating System: MS/DOS
Version 3.2

Memory Size: 640 K of main memory
plus 5 1b of extend memory

Configuration information :
30287 floating point co-processor
40 Mb hard disk
EGA color display and adapter

Target Computer:
Machine: Zenith Z-248

Operating System: MS/DOS
Version 3.2

Memory Size: 640 K of main memory
plus 5 Mb of extend memory

Configuration information :
80287 floating point co-processor
40 Mb hard disk
EGA color display and adapter

Communications Network: none

10

CONFGURA:O 11JFORZAT:ON

2.2 ::... N....O1, CHARACT:R-T:CS

One of the purposes of validazing cogi.ers ,s to determ~ne the
ihavior of a compller 1n tnose a:eas of thc Ada Standard that Derml-

ementa[Lons to differ. Class D and E tests spec-f:caiy check for
such :: ir.enzation ciffefences. However, tests in orner classes also
character:ze an implementation. The tests der.onstzate the fol-owing
characteristics:

Canacities.

The compiler correctly processes a compilation containing
723 variables in the same declarativt part. (See test
D29002K.)

The compiler correctly processe a test containing loop
statements nested to 65 levels. t See tests D55A03A. .H (8
tests).)

The compiler correctly processes "ests Containing block
statements nested to 65 levels. (See test D56001B.)

The compiler correctly processes tests containing recursive
procedures separately comp~ied as subunits nested to 17
levels. (See tests D64005E..G (3 teszs;.)

Predefined types.

This i::plemenrat on suDoorts the add:-ional oredefined
types SHORT :NTEGER, LONGI !TEGER, LOTG_ 7LOAT in the
package STANDARD. (See tests B860017..Z (7 tests).)

Based literals.

An implementation is allowed raise YM-RICERROR or
CONSTRAINTERROR when a value exceeds SYSTEX.MAXINT . This
implementation raises CONSTRAINTERROR during execution.
(See test E24201A.)

Expression evaluation.

Apparently no default initialization expressions for r'-ord
components are evaluated before any -alue :s checked to
belong to a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same
precision as the base typ. (Ste test C35712B.)

1i

,col;.,GURATO?, :NFORMAT:ON

ihus menattn uses no -xtra)its for extra precision.
This ii.le:[entation uses ail xtra bD-s for extra range.
(See test C35903A.)

Apparently NUMERC _ERROR is raised w: en an integer "::eral
operand In a co:.parzson c'r :ne efs.n -s: :s outside the
range of the base type. (Sz rest Ci_732A.)

Apparently NUMERIC ERROF is raised h.n a 11:-ra opeIand
in a fixed-point co.- arlson or ..,n7.ersnhp test Is outside
the range of the base type. (See zest C,5252A.)

Apparently underflow is gradual. (Se tests C'552-A. .Z.)

Roundina.

The method used for roundi-ng to integer is apparently round
to even. (See tests C46012A..Z.)

The method used for rounding to longest intecer :s
apparently round to even. (See tests C46012A. .Z.)

The method used for rounding to integer in static universal
real expresslons is apparently roun6. to even. (See test
C4AO14A.)

Array types.

An p_ ..mentaton Is allowed to razse ?;U:ERIC ERROR or
CONSTRA iIT_ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEMAX_in?. For thls
implementation:

Declaration of an array type or subtype declaration with
more than SYSTEM..AXINT components raises NUMERIC_ERROR
sometimes, CONSTRAINT_ERROR sometimes. (See test C36003A.)

CONSTRAINTERROR 's raised when "LENGTH is appled to an
array type with INTEGER'LAST + 2 components. (See test
C36202A.)

CONSTRAINTERROR :s raised when an array type with
SYSTE .MAX INT + 2 components is declared. (See test
C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises no exception. (See test C52103X.)

12

COJTF_:GURA ::,OI :NFORYA::OT

A packed two-d---ensional BOOLEAN array 7i:tn :.ore than
:GTGER' 'AS components raises COPSRA.IT _ERROR when the
,ength of a dimension is ca culated. and exceeds
.JTEGER',AST. array ob]ects are sliced.. (See test C5210;Y.)

A null array with one di:ens-on of grigTh greater than
INT.GER'LAST may raise NU7R:C_ERROR or COrISTRAIIT:_ERROR
either when declared o:" assign.ed. AIter atvLy, an
impilementation may accept the declaratlon. However, .encpths
must match in array slice assignments. This implementation
raises no exception. (See test E52103Y.)

7n assigning one-dimensional array types, the expression
appears to be evaluated :n :ts entirety before
CONSTRAINT _ERROR is raised- when checking whether the
expression's subtype 7s compatible qith the target's
subtype. (See test C52013A.)

-n assigning two-dimensional array ty-pes, the expression
does not appear to be evaluated in its entirety before
CONSTRAINT ERROR is raised w'-n check7ng whether the
expression's suj:ype :s co7patb e with the target's
subtype. (See test C52013A.)

Discriminated types.

In assigning record types with discriminants, the
expression appears to be evaluated in its ent:rery before
CONSTRAINTERROR is raised when checking w hether the
expression's subtype is compazible with the target's
subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all
choices appear to be evalua7ed before checking against the
index type. (See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

All choices are evaluated before CO S7AU _ERROR :s raised

if a bound in a non-nuil range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

13

CONFIGURAT7_Or! _::*FOR:ATO?1

* -ac::as.
rh a g,- a

he - _ragma 1NNE s suppored for funcztons or procedures,
liut nor functuons ca1Iei :nslde a package sDeclficat:on.
(See tests LA3004A. .3, A004C. .D, and CA3004E. .F.)

Generics.

Generic snecifications and bodies can be complied in
separate compilations. (See tests CA1O!2A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA30GLA.)

Generic subprogram declarations and bodies can be compiled
in separate compilations. (See tests CAI012A and CA2009F.)

Generic library subprogram specifica::ons and bodies can be
compiled in separate compilations. (See test CAI012A.)

Generlc non-library subprogra-, bodies can be compiled in
separate compilations from :nelr stubs. (See test CA2009F.)

Generic package declarations and)ocies can be compleC i n
separate compilations. (See :-srs CA2009C, BC3204C, and
BC3205D.)

Generic library package spec:fmcat:ons and bodies can be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

Generic non-library package bodiles as subunits can be
compiled in separate compilations. (See test CA2009C.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

Input and output.

The package SEQUENTIAL_IO can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2!O!C,
EE2201D, and EE2201E.)

The package DIRECT_10 can not be instantiated with
unconstrained array types and record types with

14

CONF:GURAT:ON ::IFORMAOTol

d"scriminants without defauls. (See tests AE2101H,
EE240ID, and E240IG.)

.-odes IN_FILE and OUT_FILE arE sup:orzC. for SEQUENTIALjO,
but not CREATE in miode -N_:LE7 . (See tests C-_2'0D. .E,

CE202N, and CE2102P.)

,odes INjhILE, OUT _FILE, and NOUTFILE are supported for
DIRECT_:O, but not CREATE in mode . FLE. (See tests
CE22F, CE-2l2.. .-, CE21O2R, C2,02T, and CE2102V.)

Modes IN F-E and OUT_FILE are supported for text files,
bur no, CREATE in mode INFILE. (See tests CE3102E and
CE31021..K.)

RESET from OUT_FILE to INI -L7 only and DELETE op rations

are supported for SEQUENTIAL_10. (See tests CE202G and
CE2102X.)

RESET except from INFILE to INOUT FILE or to OUT_FILE and
DELETE operations are supported for DIRECTTO. (See tests

CE2102K and CE2102Y.)

RESET and DELETE oPeratlons are supported for text files.
(See tests CE3IO2F..G, CE3104C, CE3I1CA, and CE3114A.)

Overwriting to a sequential file truncates to the ,ast
element written. (See test CE2208B.)

Temporary sequential files are gven names and deleted
when closed. (See rist CE2108A.)

Temporary direct files are given namies and deleted when
closed. (See test CE2108C.)

Temporary text files are qiven names and deleted when
closed. (See test CE3112A.)

"lore than one internal file can be associated with each
external file for sequential files when reading only (See
tests CE2107A. .E, CE2iO2L, CE2!O0B, and CE2111D.)

More than one internal file can be associated w-th each
external file for direct files when reading only (See tests
CE2107F..I, CE2110D and CE211iH.)

More than one internal file can be associated with each
external file for text files when reading only. (See tests
CE3111A..E, CE3114B, and CE31l5A.)

15

7-37T ::;FORMAT:ON

CAPtpER 3

TEST INTORV ATio0,

3.1 TEST RESULTS

Version L.10 of the ACVC comprises 3717 tests. When this compiler was

tested, 36 tests had been w:zhdrawn because of test errors. The AVF
determined that 376 tests were -na'pi <Ye to -his impliementation.

All 1napplicabie tests were processed during validation testing

except for 201 executable tests that use float~nq-_)oznt precision
exceeding that supported by the impieaenzation. Mocif-cations to the
cocde, processtng, or grading for 31 tests were required to
successfully demonstrate the test oblective. (See section 3.6.)

The AVF conciuces that the testing results cle-onstrate acceptable
conformity to the Ada Standard.

3.2 SU.VARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

-A B C D E
Passed 129 1:32 I4i 17 31 46 3305

Inapplicable 0 6 36S 0 1 0 376

Withdrawn 1 2 33 0 0 0 36

TOTAL 130 1140 2350 17 34 46 3717

16

TEST INFOK'ATI0N

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 5 6 7 .3 9 0 II .2 13 14

Passed 199 577 555 248 172 99 161 332 137 36 252 251 280 3305

Inappi 14 72 125 0 0 0 5 1 0 0 0 LIS 41 376

Wdrn 0 - 0 0 0 0 0 1 0 0 1 29 4 36

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 36 tests were withdrawn from ACVC Version 1.10 at the
time of this validation:

A39005G B97102E BC3009B CD2A62D CD2AG3A CD2A63B C02A63C
CD2A63D CD2A66A, CD2A66B CD2A66C CD2A66D CD2A73A CD2A73B
CD2A73C CD2A73D CD2A76A CD2A76B CD2A76C CD2A76D CD2A8lG
CD2A83G CD2A84N CD2A84M CD50110 CD2B15C CD7205C CD5007B
CD7L05A CD7203B CD7204B CD7205D CE2107: CE3111C CE3301A
CE3111B
See Appendix D for the reason that each of ::es- tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features chat a compiler is not required by the Ada Standard to
support. Others may depend on the result of another test that is
either inapplicable or withdrawn. The applicability of a test to an

implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not
necessarlly inapplicable for a subsequent attempt. For this
validation attempt, 376 tests were inapplicable for the reasons
indicated:

The following 201 tests are not applicable because they have
floating-point type declarations requiring more diglts than
System.Max_Digits:

C24113L..Y C35705L..Y C35706L..Y C35707L..Y C35708L..Y
C35802L..Z C45241L..Y C45321L..Y C45421L..Y C45521L..Z
C45524L..Z C45621L..Z C45641L..Y C46012L..Z

17

._S7 :ITFOR"A'r:ON

C35702A and B8600T are no: apLcable e,-ause :h s
:nple mentation sup7ors no predef-ned zypa Short Float.

* c45%L:. .7 A4 tesZs) and C.5332M..P tests) are not :cabe
:ecause the value ot Syster..,ax_ antissa is _=ss than 32.

C36001F, s not applicable beca,;se recomp:iazlon of Pac.age
SYSTEM. is not allowed.

38600IX, C5231D , ana CD7 OIG are not applicable because this
:npemenzaton does not support any predefined integer ty-e with
a name other than integer, Longinteger, or Short Integer.

386001Y is not applicable because this :mplementation supports
no predefined fixed-poznt type other than Duration.

B86001Z is not applicable because this implementation supports
no predefined floating-point type with a name other than Float,
LongFloat, or ShortFloat.

B91001H is not applicable because address clause for entries is
not supported by this implementation.

CD1009C, CD2A4iA..B, CD2A4IE, CD2A2A. .3, CD2A42E.F, CD2A4Z...j
are not applicable because size clause on float is not supported
by this im-plemenzation.

CDICO4B, CDICO4E, CD4051A..D are not applicable because
representation clause on derived records or derived tasks is not
supported by this implementerton.

CDIC03C, CD2A83A..C, CD2A83, CD2A8:B..J, CD2A84K..Z, CD2B:IB
are no: appl.cable because stora,.1 s.ze clause on collection of
unconstrained object is not supported.

CDC4A, C32A2'C. .D, CD2A22C .D, CD2A22G. .H, CD2A3IC..D,
CD2A32C. .D, CD2A32G..H, CD2A41C..D, CD2A42C..D, CD2A42G..H,
CD2A51C. .D, CD2A52C. .D, CD2A52G..H, CD2A53D, CD2A54D,
CD2A5i i are not appilcable because size cause for derived
priva te type is not supported by this implementation.

CD2A6IA..D,F,H,I,J,K,L, CD2A62A..C, CD2A71A..D, CD2A72A..D,
CD2A74A..D, CD2A75A..D are not applicable because of the way
this implementation allocates storage space for one component,
size specification clause for an array type or for a record type
requires compression of the storage space needed for all the
components (without gaps).

CD4041A is not applicable because alignment "at mod 8" is not
supported by this implementation.

18

TT-S- ";FORMAT :Or

,':)503E :snot appl icabl-e boecause addr.ss c-ause for :nte-ger
variable is not sup-por:-ed by -.his i ,pie!-e ntat:.on.

* BD5006D is not applIcable becauase address c'laL.se- fo- packagres :s
no- supporte-d by this imniernentation.

* CD50.1B,.D,.,H,L,1U,R, CD50"l2C,D,(;,H,L , C-D5OI3B,D,F ,H ,L,N,R
CD5O14U,W are not aopilcable because address clause for a
constant is not sup)?orted by this implementation.

* CD5OI3K is not app)licable because address clause for variables
of a record type is not supported by this implementation.

* CD5012J, CD5O13S, CD5OI4S ar, not apoolicable because address
clause for a task is not supportead by tn-'s ,peentation.

*.CE721O2Z 7s :-nanolicable because. rh:is implementation supports
create with out-file mode for SQ~1h ~

* CZE2IO-,2F1 Is inapplicable because zhis imple.--entat;on supports
creat-e with inout-file mode for DXRFCT_:0O.

* C7E-12IJ is ina:)-olicable because th:s i-.pemenrati-on supports
create with out-_file mode for D7RE-CT_:0.

*CE21O21! is a.naooplicable because tflIs implementation supports
open with in-file mode for SEQUEUTr.hL_:0.

* CE21020 is inapplicable because thls 1Xplementation supports
RESE-7 with in-1file mode for SEQUENTIAL_:0O.

*C:-2102P is inapplicable bOecause this impl.ementation supports
open with out file mode for SEQU-'JT7'L_-0.

* CE72O2Q is inapplicable because this imnolementation supports
RESET with out-file mode for SEQUENTIAL_10.

* CE2102R is inapplicable because this implementation supports
open with inout-file mode for DIRECT_1-0.

* CE2IO2S is inapplicable because this implementation supports
RESET with inoutf-ie mode for DIRECTTO0.

*C"E2IO2T is inapplicable because thi-s implamentati-on supports
open with in-file mode for DIREC? :.0.

* CE21O2U is inappoli;.cable because this imp lerrentation supports
RESET with in file mode for DIRECT 10.

19

FEST .rIFOR::A?:ON

T C-i'V s :na-ca.i. necause "nIs -pleentat-on supports
open wttn ou fle mrode for D-RECT -

: .7cable *cause -aIs :.,,- .-unza..on sup7orts
1out _f:> :oce fo o RECT0.

S CZ i5A !s not applica:,e because create with :ode :r;_f'l is
not supported. by Zhis implementation for SEQUE[ITIAL :0.

C E2:05B is :napo-icable because CR-ATE wrth rif F7LE mode is not
supported for direct access flles.

CE207B. .E (4 tests) , CE2IO7L, and CE2I1OB are not applicable
because -nuLtipLe internal files cannot be associated with the
same external fe when one or more files is writlng for
sequential files. The proper exception :s raised when ru Dipe
access is attempted.

-.... 7G. .H (2 tests) , C-±21OD, and C.2_1I.H are not applicable
because multnple internal fI s cannot be associated with the
same external file when one or nore files is writing for direct
f:les. The proper exception is raised when n. ultiple access 1s
attempted.

CE21:1IC,D are not applicable because risztnc frort :n fte to
out _fie mode for sequential fles Is not sup-orted by this
1 0plementat ion.

-7EE2O4D and E:24OG are not a-ca e because USE_ERROR is
ra-sead wan :he create of an instar.- of DIRECT_ O

CE240IH is not aoppicabie because create with -noutfLie :ode
for unconstrained records with default d-scr::: nants is not
supported by this m pleEntaton.

CE3iO2F is inapplicable because this implementation supports
reset for text files, for outfile, in_file and from out_file to
in file mode.

CE3102G is inapplIcable because this imnplementation supports
deletion of an external file for text flles.

CE310.2 :s inapplicable because this impiementaeron supports
create with out_file mode for text files.

CE3102J is inapplicable because this imple:nentation supports
open with in-file mode for text files.

20

,T:3iO2K is :napplicable bcaUse th:s :mplemenraz:on supyoris

open witn out file mode for text fies.

CI3109A is inapplicable aecause text file c=eaze with in _-liz
mode is no: supported and raises USEFROR.

CE3111B, CZE3ID.2E (2 tests), C7-3 43_, and CE3115A are not
applicable because mult lle interna f>.s cannot be associated
with the same external file when one ur nore f:es :s wr:z:ng
for cext fies. The proper exception is rarsed when multriple
access is attempted.

3.6 TEST, PROCESSING, AND EvALUATbON MODIF:CA.ONS

It is expected that some tests w:il require mocificatzons of code,
processing, or evaluation in order to compensate for legitimate
.imple:entation vehavior. Modifications are made by the AVF in cases
where legitimate implementation jeha7ior prevents the successful
completion of an (otherwise) applicable test. Exa7mes of such
.odifications include: adding a length clause to alter the default
size of a collection; splitting a Class B test into subtests so that
all errors are detected; and confirmi~ng :hat messages produced by an
executable test demonstrate conforming behavior Zhat wasn't
anticipated by the test (such as raising one exception instead of
another).

Modifications were required for 51 tests.

The test EA3004D when run as it is, h,: rplenentation fails to
deect an error on line 27 of rest f-> EASO40D6Y (line 115 of "cat
-n ea3004d*"). This is because the pragma 0ILINE has no effect when
its object is within a package specifica:on. However, the results of
running the test as it is does not confirm that the pragma hat no
effect, only that the package was not nade obsolete. By re-ordering
the compilations so that the two subprograms are compiled after file
D5 (the re-compilation of the "with"ed package that makes the various
earlier units obsolete), we create a test that shows that indeed
pragma INLINE has no effect when applied to a subprogram that is
called within a package specification: the test then executes and
produces the expected NOTAPPLICABLE result (as though INLINE were
not supported at all). The re-ordering of EA3004D test files is
0-1-4-5-2-3-6.

The following 30 tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:
B23004A B24007A B24009A B25002A B26005A B27005A B28003A
B32202A B32202B B32202C B33001A B36307A B37004A B49003A
B49005A B61012A B62001B B74304B B74304C B74401F B74401R
B91004A B95032A B95069A B95069B BA1101B2 BA1i0IB4 BC2001D

21

3C3009A BC3009C BD%"-05B

:' f ollowinc; 2-- t StS Si.--. -7 -n odrto snow that Mth e ir
was ~ . zereprese ntat'-in ca--Use Inc .1cated b y the comnmenz

C:D2A6'IA CDZA6IB CD21'61f CD2/A61:- CD2A610 CD2A6G2A C7D2,AE2B
CD2A7>A Cll-A713 CD'A72A CD2A723 CD2 A7 5A CDL'A75B C .- 1A ""4'B
CD2AS4'C CD)2A84D CD2A84E CD2A841F CD2A81tG CD2AS4iI CD2AS4:'-

3.7 ADD:T:-ONAL 7TST7'G 7j:uF. :AT:ON

J. .---a_a7:on

Prior to -*alidat-,on, a set of test ra-sults for ACVC VErsion 1.1O
prod~uced by -nhe AlsyCOX?_003 was sli tec zo the AV-- 1y the
app Icant for review. Anlalysis of thsresu cemonSzra-m 7:nar z~e
!comx)-e: succe:Ssfull-y passeda---- Ci., rests, and the co-p1i-er-
exai bized the expected lie'.avior on a-- inap-)licaole tests.

3.7.2 Te-,st :Mezhod

7esti-ng of zn AlsyCOM? -003 using ACVC Version >Owas conducted
o)n-siat2 y a -;al-datlion te a m fr o:7 the AWF . T h e c on f igu r a"ion

conis!edof -- Zenith Z-248 operating -.nde:r .KS/DOS, Ve-rsionl 3.2.

A tape con taining all tests was takr-n on-it .y 7 e -;a.'arlon team
for proces sing. Tests that flaKe use of implemen a on-seCtz Values
werea customizea by Alsys after loading of the tape.

The contents of the tape were not -loaded directly onto the hs
computer. They were loaded on a VAX/VXS Tmachltne and transferred via a
network to the Zenith Z-248. This is the reason why preval-,daziona
tests were use-d for the the validation. -hose tests were loaded by
Alsys from a magnetic tape containing al. te-sts pro; ided by the AVF.
CUStomiZat~on was done by Alsys. A:: the tests were checked at
prevalidat~on tvr.e.

intecr:ty of the validation tests was :)c~ y cnZe7--ing mIat no
:.od:fcat,--on of the test occured afte--r the r -e ne -3-evaI:da::on
results were transferred on disquettes for sunmTission to teAV--.
This check was performed by verifying that the date of creation (or
last modification) of the test fi es was earlier, than the
prevalidati-on daie. After validaLiun was derformed, 80 source rests
were selected by the AVF and checked for integrity.

2 2

-EST D:FAKR:AT :1

-h- f! szt of : srs ',as Po Dil,d, -:nx. , ,K. ! x leaoie :zs:s
y,-v _- :o.n: ont 0a, Zeni t Z'-243 . Resw :s w,,aya prin,,v=c :,o.m. 7h, _rni. Qhe

..St computer.

7he co-pi:er vas ,eszec usfing c.c:.nd s&cro:s p:rovd y Alsys and

r Y:Ewh by the validation roamr. 7he ox.w:-r : as :es,-d using a:-
defaulz o-:eon serrins except for the following:

OPT:ON / SWITCH EFFECT

GENERIC=STUBS Code of genw-c instantiation :s placed in separate
units

CALLOO:.E rhe prac:a MNEL are taken :n.o account

Tos.s were compiled, i:nked, an& excuted ,.is appropr:ate) us:ng 2
cosuzeYs. -est outpu-, compilation lisinns, and job logs were

captu:ed on disqueczes and archvet at :he A"F. The listings examined
on-site by the validation tea:m were also arcl:vi.d.

3.7.3 :es. Size

- s::ng was conduc-tV a: Asys, :nc. in qalzha:., USA an& was co:pleted
on 21 November 1388.

23

:;,cLARA-:O OF CONFOR::ANCE

DzCLARAT-OI' OT ONTO..,w.;.

Alsys ha5 su m teZ Ch f oL w -q D a. a -on of
Conformance conc-zfning -hl. AcsyC;YK?_O03.

24

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: Alsys

Ada Validation Facility: AFNOR, Tour Europe Cedex 7,
F-92080 Paris la D~fense

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: AlsyCOMP_003 Version 4.1

Host Architecture ISA: Zenith Z-248
OS&VER #: MS/DOS, Version 3.2

Target Architecture ISA: Zenith Z-248
OS&VER #: MS/DOS, Version 3.2

Implementor's Declaration

I, the undersigned, representing Alsys, have implemented no deliberate
extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compiler(s) listed in this declaration. I declare that Alsys is the
owner of record of the Ada language compiler(s) listed above and, as
such, is responsible for maintaining said compiler(s) in conformance
to ANSI/MIL-STD-1815A. All certificates and registrations for Ada
language compiler(s) listed in this declaration shall be made only in
the owner's corporate name.

_______"_ -,,_._____•_____---" Date
Alsys
Mike Blanchette
Vice President and Director of Engineering

DECLARATION OF CONFORMANCE

Owner's Declaration

I, the undersigned, representing Alsys, take full responsibility for
implementation and maintenance of the Ada compiler(s) listed above,
and agree to the public disclosure of the final Validation Summary
Report. I further agree to continue to comply with the Ada trademark
policy, as defined by the Ada Joint Program Office. I declare that all
of the Ada language compilers listed, and their host/target
performance, are in compliance with the Ada Language Standard
ANSI/MIL-STD-1815A.

.' - -4Date
Alsys
Mike Blanchette
Vice President and Director of Engineering

TEST ?ARA:K7ZEFS

APPEND:X B

TES7 ?ARA:3T:RS

Ccrra:n teszs :n the ACVC maie use of iementation-dependent values,
suCn as 7he .taxlnum _encth of an input lne and invaliid file names. A
t est :nat makes use of such values Is identLf:ad by t axtension .TST
.n is fle na:.e. Actual values to be substtzuted a:e represented by

names that b~gin withr a dollar sign. A value tust be substituted for
each of these names before the test is run. 7he values used for this
*alidation are given below.

Name and Meaning Value

SACCSIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG_IDI (254 * 'A') &
Identifier the size of the
maximum input line length
with varying last character.

$BIGD2 (254 'A &
IdentLfier zne size of the
maximum input line length
with varying last character.

$BIGIj3 (126 'A') & '3' & (128 * 'A')
Identifier the size of the
maximum input line length
with varying middle character.

SBIG_ D4 (126 'A') & '4' & (128 *
Identifier the size of the
maximum input line length
with varying middle character.

27

?ES PARAMIET-ERS

.ame and Aeaninc Value

SBIGI TL . (252 '0') & '293'
An inteaer li-eral of value
29- w!th enough lead:ng zeroes
so that it is the size of the
maxizrum ine length.

$B:G_REAL_LIT (250 '0') & '690.0-
A universal real literal of
:alue 690.0 with enough

:eading zeroes to be the size
of the maximum line length.

SBIG_STRUGI & ("27 * 'A') &
A strng l-tera. which when
catenated with BIGSTRING2
yieds the image of BIGDI.

SB:G_STR1,TG2 ''. & (127 * 'A') & "1"'
A string litera. which when
catenated to the end of
BIGSTRINGi yields the image
of BIGIDl.

3BLANKS (235 * '

A sequence of blanks twenty
characters iess than the size
of the maximum line length.

SCOUTITLAST 214733647
A universal integer literal whose
value Is TEXTIO.COUNT....iSTI.

SDEFAULTMEMSIZE 655360
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULTSTORUNIT 8
An integer literal whose value
is SYSTEM.STORAGEUNIT.

SDEFAUT _SYS_ NAME I 80X86
The value of the constant
SYSTEM!. SYST EM-11AM3.

SDELTA DOC 2#l.0#E-31
A real literal whose value is
SYSTEM.FINEDELTA.

28

TEST ?A A:: ETZRS

-a.... and M4eaninc Va u

SF:ELDLAST 25
A universal intecer literal whose
;alue is TEXT :O.FIELDLAST.

$FIXED N A-E NOSUCHFXEDTYPE
The name of a predefined
fixed-point type other than
DURATION.

SFLOATNAIE 10 SUCHTYPE
The name of a predefined
floa::ng-point type other than
FLOAT, SHORTFLOAT, or
LONG_?LOAT.

SOREATER _THAN_DURAT:ON 2_097_151.999_023437_51
A universal real literal that
lies between DURATO -,'BA'LAS-
and DU..ATIONLAST or any value
in the range of DURATION.

SGREATER_THAN_DURATIONBASE_LAST 3_000_000.0
A universal rea. --tiral thaz -s
greater than DURATION'BASE'LAST.

"HG' PRORITY i0

An integer literal whose value
is the upper bound of th range
for the subtype SYSTE?.PRIOR:TY.

$S!- -EG LEXTERNAF.77IL ENAIEI ILGLS&~
An external file name which
contains invalid characters.

SI'EGAL- EXTERNALFILE NAh;E2 $%&*()?/)(*&\iS%
An external file name which
is too long.

$lTTZGERFIRST -32768
A universal integer literal
whose value is INTEGER'F:RST.

$INTEGERLAST 32767
A universal integer literal
whose value is INTEGER'LAST.

29

TEST ?ARAMETERS

Ua:ne and ::eanva 11aue

S7NTE-(,E? _LAS- _?"':3768
A un versal Intecer i teraI
whose value :s :TEGER LAS. S -.

SLESS _,HAN_DURA , Oi -:_097_'52.5
A un-versa_ real literal that
lies between DURATION'BASE'FIRST
and DURATION 'FIRST or any value
in the range of DURATION.

SLESS_THANDURATIONBASEFIRST -3000_000.0
A universal real literal that is
less than DURAT7ON'BASE'FIRST.

SLOWPRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEN.PRIORITY.

SMANTISSADOC 31
An integer literal whose value
is S7YSTEM-24AX_ ANT:SSA.

SMAX_DIG:TS -5

.:ax:mu.: d7glts suppnorted for
floating-point types.

SMAX T[LEN 253
Haxi-num input line !ength
perzmitted by the i-piementarion.

$MAX_IN: 2147483647
A universal integer literal
whose value is SYSTE:4.:AX_INT.

S4AX_ TPLUS_1 2147483648
A universal integer literal
whose value is SYSTEM.MAXINT+l.

S1%AX_LENINTBASED_LITERAL '42:' & (250 * '0') & '11:'
A universal integer based
literal whose value is 2#-l#
with enough leading zeroes in
the mantissa to be 4AX INLEN
long.

30

TEST ?ARA-':ETES

lar-e and Yeaning Value

$S-AX _:N_, EAl3ASEDLI.ER'L 16: & (24E * 0) & :.E.
A universal real based -

whlose value Is 16: 17.7: wit

enough leading zeroes in the
-,an-issa to be MAX N LEN .ong.

$XAX_S. .RG_LITERAL .. 33 * 'A'& &
A string !-teral of size
"lAX 1 LEN, including the quote
characters.

S',N _D-I -. 764iS

A universal inteaer literai
whose value is SYSTE'. ", llfT.

SMIN-TASKSIZE 32
An integer l teral whose value
is the number of bits required
to hold a task oblect which has
no entries, no declarations, and
NULL;" as the only statement in
its body.

NAM.E O110SUCHTYPE
A na:ne of a predefined numeric
type other than FLOAT, TNTEGER
SHORT_FLOAT, SHORTINTEGER,
LONG_7LOAT, or LONGINTEGER

SNAME_LIST 7 80X36
A list of enumeration llterals
in the type SYSTE.NAE,
separated by commas.

SNEGBASEDINT 16#FFFFFF.E#
A based integer literal whose
highest order nonzero bit falls
in the sign bit position of the
representation for SYSTEM.MAX_!NT.

$NEW_YEM_SIZE 655360
An integer literal whose value
is a permitted argument for
pragma memory size, other than
DEFAULTMEMSIZE. If there is
no other value, then use
DEFAULTEM_SIZE.

31

"TST ?ARA":E.ERS

:.a:m and X-eanIna Value

1-;EW 3TOR _UUT N

An :n ecer it-eral whose value
is a per:ntted argument for
pracmna st orageunlt, other than

DEFAULTSTORUNIT. If there is
no other permitted value, then
use value of SYSTEN'.STORAGE UBTi.

SNE ;_SYSNAMIE I_80X86
A value of the type SYSTEM.NAE,
other than $DEFAUJLTSYS_NAME. If

there -s only one value of that

type, then use that value.

$TASK_SIZE 32
An integer literal whose value
is the nurmber of b:cs required
to hold a task obiecz which has

a single ie.ntry with one inout
parameter.

STICK 1.0i18.2

A real izeral whose value is
SYSflE?[.T:CK.

32

WITHDRAWT TESTS

A??B:'DIx '

!:THDRAwu TEST

:orme tests are withdrawn from the ACVC because they do not conform to
the Aaa Standar>. The fo'iownc 36 tests nad .)een wit.;:rawn at thle
z.me ot vaidation testing for the reasons indicated. A oeterence af
the form A:-ddddd :s to an Ada Commentary.

A39005G -his test unreasonably exp)ects a component clause to
pack an array component into a minimum size (line 30).

B97!02E his test contains an uni cnded :egaiLy: a select
statement contains a nul1 szatez nt at the place of a
selective wait alternative (line 31).

BC3009B This test wrongly expects that c-rcular instanttataons
will be detected in severaI compilacion units even
though none of the units is ilqegal with respect to the
units it depends on; by A-00256, the illegality need
not be< deteczad until execution is attempted (line Or).

CD2A62D Th:s test wrongly requires "ha: an array ob-ect's size
.:e no greater than 10 al-hough its subtype's size was
specified to be 40 (line 137).

A6 3A. . D, .ClA66A. .D, CDZA73A..D, CD2A76A..D -16 tests] These tests
wrongly attempt to check the size of objects of a
derive(. :y: (for wnlch a 'SZE 'ength clause is given)
by passing them to a derived subprogram (whch
impl c:tly converts them to the parent type (Ada
standard 3.4:14)). Additionally, they use the 'SIZE
length clause and attrtbute, whose interpretation is
considered problematic by the WG9 ARG.

C32A81G, CD2A83G, CD2A84N & M, & CD50110 These tests assume that
dependent tasks will terminate while the main program
executes a loop that simply tests for task termination;
this is not the case, and the main progra m:ay Ioop
indefinitely (lines 74, 85, 86 & 96, 36 & 96, and 58,
resp.).

CD2Bi5C & CD7205C These tests expect that a 'STORAGESIZE length
clause provides precise control over the number of
designated objects in a collection; the Ada standard
13.2:15 allows that such control must not be expected.

33

!;7THDRAWN TESTS

CD5003 -his zest wrongly expects an z:p1 cIty declared
subprocra" to b a :: aCress z Ia s spc f >c fcur an
u~iaceu suaprogra, (l.n .

CDIOA This test recuires zIIat svIccess 17 ca.ls zo
CALEUDAR.COCK chancre by at least nYSTY.IK; however,
by Commentary A--00201, It Is only zn expected
frequency of chance that Tust be at least SYST7.T:CK--
particular instances of caange z-ay)- less -lzne 29).

CD7203B, & CD720B These tests usa th: 'SZE length clause and
attribute, whose inzerp ezation is considered
proble:ratlc by the WG9 ARG.

CD705D This test checks an _nvaI_ test ob~ec::ve: z treats
the spectfication of storace to b- :eserved for a task's
activation as thouch it were i.ke the specification of
storage for a collection.

CE21071 This test requires that obiects of two similar scalar
types be distinguished when read ftom a file--DA:A_ERROR
is expected to be raised by an attempt to read one
object as of the other type. However, it is not clear
exactly how the Ada standard 14.2.4:4 :s to be
interpreted; thus, this test objective 1s not considered
valid. (line 90).

CE3lllC This test requires certain behavior, when two files are
associated with the sane external ftle, that is not
required by the Ada standarc.

CE330IA This zest contains several calls to -OF L &
END OF PAGE that have no parameter: these calls were
intended to specify a fie, not :o refer to
STANDARDITPUT (lines 103, 107, 118, 132, & 136).

CE3411B This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUTERROR is
raised by a subsequent PUT operation. Bu- the former
operation will generally raise an exception due to a
lack of available disk space, and the tst would thus
encumber validation testing.

34

A??~JD 3'03 7HE Ada 37ANDARD

A---ENDIX 7 OF T~Ada STAND)ARD

Th e only allo waa :~:.:n ra n dren -anc i -:s Cor r eis-ond to0
~m')nta:0r-epenjn7 p ragmas, to czrtain ... ~-deedn

con-;-ntlons as menrione. in chapt.-r i3of 7.im Ada3 Standard, and to
cran allowed restrictions on Ireir :SE T 7 on clauses. Thtm

7-m-le-mentation-dependent characteristics of tlhe(AsyCOYP_003, Version
4.,are described -in the fo-Llowi-ng secti7ons, -Which a:scuss top~ics in

Appendi:x 7 of the Ada Standard. p:ennaansci ortions of
.ne pac.Kage S-ANDARD are also included -in ti-s almmEndlax.

D ac., ag -ST ANDARD is

type :N-T-G--R is r-ange -32_7-'3 . . 3D 767;

type SHORTINTEGER is range -128 .. :J7;

type "SONG :UT'TEGTR 1-s range -2 14 7 _483 643. 214 3367

type F'.OAT is digits 6 rangc

type LONG '7FLOAT as digits 15 range

-2#1.1111 11111 111111 l11 l-!1 11 11li11.-1111 111 J#1 23;

type DURATION is delta 0.001 rango-- -20q7':'.!i . -,q7i52.0;

end STANDARD;

35

Copyright 1988 by Alsys

All rights reserved. No part of this document may be reproduced in
any form or by any means without permission in writing from Alsys.

Printed: November 1988

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice. Consult Alsys to determine whether
such changes have been made.

Alsys, AdaWorld AdaProbe, AdaXref, AdaReformat, and AdaMake are registered trademarks of Alsys.
Microsoft, MS-DOS and MS are registered trademarks of Microsoft Corporation.
IBM, PC AT and PC-DOS are registered trademarks of International Business Machines Corporation.
INTEL is a registered trademark of Intel Corporation.

36.

TABLE OF CONTENTS

APPENDIX F 1

1 Implementation-Dependent Pragmas 2
1.1 INLINE 2
1.2 INTERFACE 2
1.3 INTERFACE NAME 2
1.4 INDENT 3
1.5 Other Pragmas 4

2 Implementation-Dependent Attributes 4

3 Specification of the package SYSTEM 4

4 Restrictions on Representation Clauses 8
4.1 Enumeration Types 9
4.2 Integer Types 11
4.3 Floating Point Types 12
4.4 Fixed Point Types 14
4.5 Access Types 16
4.6 Task Types 17
4.7 Array Types 18
4.8 Record Types 21

4.8.1 RECORDSIZE 26
4.8.2 VARIANT INDEX 26
4.8.3 ARRAY DESCRIPTOR 27
4.8.4 RECORD DESCRIPTOR 28

5 Conventions for Implementation-Generated Names 29

6 Address Clauses 29
6.1 Address Clauses for Objects 29
6.2 Address Clauses for Program Units 30
6.3 Address Clauses for Entries 30

Table of Contents

7 Restrictions on Unchecked Conversions 30

8 Input-Output Packages 30
8.1 Correspondence between External Files and 286 DOS Files p
8.2 Error Handling 31
8.3 The FORM Parameter 31
8.4 Sequential Files 32
8.5 Direct Files 32
8.6 Text Files 32
8.7 Access Protection of External Files 33
8.8 The Need to Close a File Explicitly 33
8.9 Limitation on the procedure RESET 33
8.10 Sharing of External Files and Tasking Issues 34

9 Characteristics of Numeric Types 34
9.1 Integer Types 34
9.2 Floating Point Type Attributes 34
9.3 Attributes of Type DURATION 35

10 Other Implementation-Dependent Characteristics 35
10.1 Use of the Floating-Point Coprocessor (80287) 35
10.2 Characteristics of the Heap 36
10.3 Characteristics of Tasks 36
10.4 Definition of a Main Subprogram 37
10.5 Ordering of Compilation Units 37

11 Limitations 37
11.1 Compiler Limitations 37
11.2 Hardware Related Limitations 37

INDEX 39

Alsys 286 DOS Ada Compiler. Appendix F. Version 4.2

APPENDIX F

Implementation - Dependent Characteristics

This appendix summarizes the implementation-dependent characteristics of the Alsys 286
DOS Ada Compiler. This appendix is a required part of the Reference Manual for the
Ada Programming Language (called the RM in this appendix).

The-sections of this appendix-are as follows:

1. The form, allowed places, and effect of every implementation-dependent
pragma.

2. The name and the type of every implementation-dependent attribute.

3. The specification of the package SYSTEM.

4. The list of all restrictions on representation clauses.

5. The conventions used for any implementation-generated name denoting im-
plementation-dependent components.

6. The interpretation of expressions that appear in address clauses, including

those for interrupts.

7. Any restrictions on unchecked conversions.

8. Any implementation-dependent characteristics of the input-output packages.

9. Characteristics of numeric types.

10. Other implementation-dependent characteristics.

11. Compiler limitations.

The name Alsys Runtime Executive Programs or simply Runtime Executive refers to the
runtime library routines provided for all Ada programs. These routines implement the
Ada heap, exceptions, tasking control, and other utility functions.

General systems programming notes are given in another document, the Application De-
veloper's Guide (for example, parameter passing conventions needed for interface with
assembly routines).

Appendix F. Implementation- Dependent Characteristics

1 Implementation-Dependent Pragmas

1.1 INLINE

Pragma INLINE is fully supported; however, it is not possible to inline INLINE a
subprogram in a declarative part.

1.2 INTERFACE

Ada programs can interface with subprograms written in Assembler and other languages
through the use of the predefined pragma INTERFACE and the implementation-defined
pragma INTERFACENAME.

Pragma INTERFACE specifies the name of an interfaced subprogram and the name of
the programming language for which parameter passing conventions will be generated.
Pragma INTERFACE takes the form specified in the RM:

pragma INTERFACE (language-name, subprogramname);

where,

" languagename is ASSEMBLER, ADA, or C.

" subprogramname is the name used within the Ada program to refer to the
interfaced subprogram.

The only language names accepted by pragma INTERFACE are ASSEMBLER, ADA and
C. The full implementation requirements for writing pragma INTERFACE subprograms
are described in the Application Developer's Guide.

The language name used in the pragma INTERFACE does not have to have any re-
lationship to the language actually used to write the interfaced subprogram. It is used
only to tell the Compiler how to generate subprogram calls; that is, what kind of
parameter passing techniques to use. The programmer can interface Ada programs with
subroutines written in any other (compiled) language by understanding the mechanisms
used for parameter passing by the Alsys 286 DOS Ada Compiler and the corresponding
mechanisms of the chosen external language.

1.3 INTERFACENAME

Pragma INTERFACE NAME associates the name of the interfaced subprogram with
the external name of the interfaced subprogram. If pragma INTERFACENAME is not
used, then the two names are assumed to be identical. This pragma takes the form:

pragma INTERFACE-NAME (subprogram-name, siringliteral);

2 Alsys 286 DOS Ada Compiler. Appendix F, Version 4.2

where,

" subprogramname is the name used within the Ada program to refer to the
interfaced subprogram.

" string literal is the name by which the interfaced subprogram is referred to
at link time.

The pragma INTERFACENAME is used to identify routines in other languages that
are not named with legal Ada identifiers. Ada identifiers can only contain letters, dig-
its, or underscores, whereas the DOS Linker allows external names to contain other
characters, for example, the dollar sign ($) or commercial at sign (@). These characters
can be specified in the stringliteral argument of the pragma INTERFACE-NAME.

The pragma INTERFACE_NAME is allowed at the same places of an Ada program as
the pragma INTERFACE. (Location restrictions can be found in section 13.9 of the
RM.) However, the pragma INTERFACENAME must always occur after the pragma
INTERFACE declaration for the interfaced subprogram.

The string literal of the pragma INTERtACE NAME is passed through unchanged to
the 286 DOS object file. The maximum length of the string literal is 40 characters.
This limit is not checked by the Compiler, but the string is truncated by the Binder to
meet the Intel object module format standard. (For example, the IBM Macro
Assembler limits external identifiers to 31 characters.)

The Runtime Executive contains several external identifiers. All such identifiers begin
with either the string *ADA@" or the string "ADAS@". Accordingly, names prefixed by
"ADA@" or "ADAS@* should be avoided by the user.

Example

package SAMPLE DATA is

function SAMPLE-DEVICE (X: INTEGER) return INTEGER;

function PROCESS-SAMPLE (X: INTEGER) return INTEGER;

private

pragme INTERFACE (ASSEMBLER, SAMPLE DEVICE);
pragmn INTERFACE (ADA, PROCESSSAMPLE);

pragim INTERFACENAME (SAMPLE-DEVICE, "DEVIOSGETSAMPLE");

end SAMPLE DATA;

1.4 INDENT

Pragma INDENT is only used with AdaR'eformat. AdaReformat is the Alsys reformatter
which offers the functionalities of a pretty-printer in an Ada environment.

The pragma is placed in the soLrce file and interpreted by the Reformatter.

pragma INDENT(OFF);

causes AdaReformat not to rodify the source lines after this pragma.

Appendix F, Implementation- Dependent Characteristics 3

pragma INDENT(ON),

causes AdaReformat to resume its action after this pragma.

1.5 Other Pragmas

Pragmas IMPROVE and PACK are discussed in detail in the section on representation
clauses and records (Chapter 5).

Pragma PRIORITY is accepted with the range of priorities running from I to 10 (see the
definition of the predefined package SYSTEM in Section 3). Undefined priority (no
pragma PRIORITY) is treated as though it were less than any defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress all checks in a given compi-
lation by the use of the Compiler option CHECKS.

2 Implementation-Dependent Attributes

P'IS ARRAY For a prefix P that denotes any type or subtype, this at-
tribute yields the value TRUE if P in an array type or
an array subtype; otherwise, it yields the value FALSE.

P'RECORD DESCRIPTOR These attributes are used to control the representa
P'ARRAYDESCRIPTOR tion of implicit components of a record, see section

4.8

3 Specification of the package SYSTEM

The implementation dos not allow the recompilation of packageSYSTEM.

package SYSTEM is

"" * (1) Required Definitions. *

type NAME is (1_80x86);

SYSTEM-NAME constant NAWE := 1_80x86;

STORAGE UNIT : constant :: 8;
MEMORY-SIZE : constant := 640 * 1024;

-- System-Dependent Named Numbers:

MININT constant := -(2 **31);
MAXINT : constant :z 2*'31 - 1;

4 Alsys 286 DOS Ada Compiler. Appendix F. Version 4.2

MAX OIG[TS :constant 15 I;
MAX-MANTISSA :constant :z 31;
FINE-DELTA :constant :a 2#1.0#E-31;

Appendix F, Implementation -Dependent Characteristics 5

-- For the high-resoLution timer, the clock resolution is

1.0 / 1024.0.
TICK : constant :a 1.0 / 18.2;

-- Other System-Dependent Declarations:

Subtype PRIORITY is INTEGER range 1 .. 10;

"- The type ADDRESS is, in fact, implemented as a

segment:offset pair.

type ADDRESS is private;

NULL-ADDRESS: constant ADDRESS S null;

* (2) MACHINE TYPE CONVERSIONS *

-- If the word / double-word operations below are used on

-- ADDRESS, then MSW yields the seguient and LSW yields the

offset.

-- In the operations below, a BYTE-TYPE is any simple type

-- inptemented on 8-bits (for example, SHORT INTEGER), a WORD TYPE is

-- any simple type implemented on 16-bits (for example, INTEGER), and

-- a DOUBLEWORDTYPE is any simple type implemented on

-- 32-bits (for example, LONG INTEGER, FLOAT, ADDRESS).

-- Byte -2= Word conversions:

-- Get the most significant byte:

generic

type BYTETYPE is private;
type WORD TYPE is private;

function NSB (W: WORD TYPE) return BYTE-TYPE;

-- Get the least significant byte:

generic

type BYTETYPE is private;

type WORDTYPE is private;

function LS8 (W: WORD-TYPE) return BYTE TYPE;

-- Compose a word from two bytes:

generic

type BYTE TYPE is private;

type WORDTYPE is private;

function WORD (NSB, LSB: BYTE-TYPE) return WORD-TYPE;

6 Alsys 286 DOS Ada Compiler. Appendix F, Version 4.2

-- Word <a" Double-Word conversions:

Get the most significant word:

generic

type WORD_TYPE is private;
type DOUBLE WORDTYPE is private;

,-tion NSW (W* DOUBLEWORDOTYPE) return WORDTYPE;

-- Get the Least significant word:

generic

type WORD-TYPE Is private;

type DOUBLEyORO TYPE is private;
function LSW(W: DOUBLE WORDTYPE) return WORDTYPE;

-- Compose a DATA double word from two words.

generic

type WORDTYPE is private;

The foLLowing type must be a data type
-- (for example, LONG INTEGER):

type DATA DOUBLE WORD is private;
function DOUBLE _WORD (MSW, LSW: WORD TYPE)

return DATADOUBLE WORD;

-- Compose a REFERENCE double word from two words.

generic

type WORDTYPE is private;

-- The following type must be a reference type
(for example, access or ADDRESS):

type REF DOUBLE WORD is private;
function REFERENCE (SEGMENT, OFFSET: WORD TYPE)

return REF DOUBLEWORD;

* (3) OPERATIONS ON ADDRESS '

You can get an address via 'ADDRESS attribute or by
insiantiating the fvtction REFERENCE, above, with

appropriate types.

-- Some addresses are used by the Compiler. For example,

-- the display is Located at the Low end of the DS segment,

-- and addresses SS:O through SS:128 hold the task control

-- block and other information. Writing into these areas

-- will have unpredictable results.

- Note that no operations are defined to get the values of
-- the segment registers, but if it is necessary an

interfaced function can be written.

Appendix F, Implementation- Dependent Characteristics 7

generic
type OBJECT is private;

function FETCH FROM ADDRESS (FROM: ADDRESS) return OBJECT;

generic
type OBJECT is private;

Procedure ASSIGN TO ADORESS (01J: OBJECT; TO: ADDRESS);

private

end SYSTEM;

4 Restrictions on Representation Clauses
This section explains how objects are represented and allocated by the Alsys 286 DOS
Ada compiler and how it is possible to control this using representation clauses.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,
fixed point, access, task, array and record types. For each class of type the
representation of the corresponding objects is described.

Except in the case of array and record types, the description for each class of type is
independent of the others. To understand the representation of an array type it is
necessary to understand first the representation of its components. The same rule applies
to record types.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

" a (predefined) pragma PACK, applicable to array types

" a record representation clause

* a size specification

For each class of types the effect of a size specification is described. Interference
between size specifications, packing and record representation clauses is described under
array and record types.

Representation clauses on derived record, or derived tasks are not supported.

Size representation clauses on types derived from private types are not supported when
the derived type is declared outside the private part of the defining package.

8t Alsys 286 DOS Ada Compiler, Appendix F. Version 4.2

4.1 Enumeration Types

Internal codes of enumeration literals

When no enumeration representation clause .applies to an enumeration type, the internal
code associated with an enumeration literal is the position number of the enumeration
literal. Then, for an enumeration type with n elements, the internal codes are the
integers 0, 1, 2, .. , n-I.

An enumeration representation clause can be provided to specify the value of each
internal code as described in RM 13.3. The Alsys compiler fully implements enumeration
representation clauses.

As internal codes must be machine integers the internal codes provided by an
enumeration representation clause must be in the range -231 .. 231_l.

Encoding of enumeration values

An enumeration value is always represented by its internal code in the program
generated by the compiler.

Minimum size of an enumeration subtype

The minimum size of an enumeration subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M
are the values of the internal codes associated with the first and last enumeration values
of the subtype, then its minimum size L is determined as follows. For m >= 0, L is the
smallest positive integer such that M <= 2L-1 . For m < 0, L is the smallest positive
integer such that -2 L-1 <= m and M <- 2 L_-I.

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACKANDWHITE is COLOR range BLACK .. WHITE;
-- The minimum size of BLACKANDWHITE is 2 bits.

subtype BLACK OR WHITE is BLACKANDWHITE range X.. X;
-- Assuming that X is not static, the minimum size of BLACKORWHITE is
-- 2 bits (the same as the minimum size of its type mark
BLACKANDWHITE).

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named subtype, the
objects of that type or first named subtype are represented as signed machine integers.

Appendix F, Implementation-Dependent Characteristics 9

The machine provides 8, 16 and 32 bit integers, and the compiler selects automatically
the smallest signed machine integer which can hold each of the internal codes of the
enumeration type (or subtype). The size of the enumeration type and of any of its
subtypes is thus 8, 16 or 32 bits.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to
a first named subtype. The size specification must of course specify a value greater than
or equal to the minimum size of the type or subtype to which it applies:

type EXTENDED is
(-- The usual ASCII characters.

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DC 1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FS, GS, RS, US,9, 1, s, 9*9 , 1', &1, 99

t 1, C3 , D4 , 15: ', 7,981, 999, 929, 3 ," . I' ll, 6: , I7T ,

'@', 'A', 'B', 'C', 1131, 'E'9 IF, 'G',
'H', II, IF', 'K', 'kl, IM", 'N', '01,
:P', 'Q', "R', 'S', 'T 9 'U', 'V', 'W',
'X9, 91', ' Z', '[, 'V,1 'r, '^', ' ',1
.. ., a l l ' b , c ' , ' d , e , ' 1 r , 'i ,
'hg, it, 'j. T9k, 1% 'm', 9 09
Sp', lq', Irl, s, tI, tut, , w ,
9'x'9, ' y9, I"z' 'I' 'rI}

-- Exte
LEFT ARROW,
RIGHTARROW,
UPPER ARROW,
LOWERARROW,
UPPERLEFTCORNER,
UPPER RIGHT CORNER,
LOWERRIGHTCORNER,
LOWERLEFTCORNER

for EXTENDED'SIZE use 8;
-- The size of type EXTENDED will be one byte. Its objects will be represented
-- as unsigned 8 bit integers.

The Alsys compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an enumeration subtype has the same size as its subtype.

10 Alsys 286 DOS Ada Compiler. Appendix F. Version 4.2

4.2 Integer Types

Predefined integer types

There are three predefined integer types in the Alsys implementation for 180x86
machines:

type SHORT INTEGER is range -2**07 .. 2*07-1;
type INTEGER is range -2**15 .. 2*15-1;
type LONGINTEGER is range -2*31 .. 2"31-1;

Selection of the parent of an integer type

An integer type declared by a declaration of the form:

type T is range L .. R;

is implicitly derived from a predefined integer type. The compiler automatically selects
the predefined integer type whose range is the smallest that contains the values L to R
inclusive.

Encoding of integer values

Binary code is used to represent integer values. Negative numbers are represented using
two's complement.

Minimum size of an integer subtype

The minimum size of an integer subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

For a static subtype, if it has a null range its minimum size is I. Otherwise, if m and M
are the lower and upper bounds of the subtype, then its minimum size L is determined
as follows. For m >= 0, L is the smallest positive integer such that M <= 2 L_ 1. For
m < 0, L is the smallest positive integer that -2L-1 <= m and M <= 2L-.

subtype S is INTEGER range 0 .. 7;
-- The minimum size of S is 3 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of its type mark S).

Appendix F. Implementation-Dependent Characteristics 11

Size of an integer subtype

The sizes of the predefined integer types SHORTINTEGER, INTEGER and
LONGINTEGER are respectively 8, 16 and 32 bits.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly. For example:

type S is range 80 .. 100;
-- S is derived from SHORTINTEGER, its size is 8 bits.

type J is range 0 .. 255;
-- J is derived from INTEGER, its size is 16 bits.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER, its size is 16 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S is range 80 .. 100;
for S'SIZE use 32;
-- S is derived from SHORT INTEGER, but its size is 32 bits
-- because of the size specification.

type J is range 0 .. 255;
for J'SIZE use 8;
-- J is derived from INTEGER, but its size is 8 bits because
-- of the size specification.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER, but its size is 8 bits
-- because N inherits the size specification of J.

Size of the objects of an integer subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

4.3 Floating Point Types

Predefined floating point types

There are two predefined floating point types in the Alsys implementation for 180x86
machines:

12 Alsys 286 DOS Ada Compiler, Appendix F, Version 4.2

type FLOAT Is
digits 6 range -(2.0 - 2.0"*(-23))*2.0**127 .. (2.0 - 2.0**(-23))*2.0**127;

type LONGFLOAT is
digits 15 range -(2.0 - 2.0**(-5l))*2.0**Wi 23 .. (2.0 - 2.0**(-5I))*2.0**1023;

Selection of the parent of a floating point type

A floating point type declared by a declaration of the form:

type T Is digits D [range L .. R];

is implicitly derived from a predefined floating point type. The compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L to R inclusive.

Encoding of floating point values

In the program generated by the compiler, floating point values are represented using
the IEEE standard formats for single and double floats.

The values of the predefined type FLOAT are represented using the single float format.
The values of the predefined type LONG__FLOAT are represented using the double
float format. The values of any other floating point type are represented in the same
way as the values of the predefined type from which it derives, directly or indirectly.

Minimum size of a floating point subtype

The minimum size of a floating point subtype is 32 bits if its base type is FLOAT or a
type derived from FLOAT; it is 64 bits if its base type is LONGFLOAT or a type
derived from LONGFLOAT..

Size of a floating point subtype

The sizes of the predefined floating point types FLOAT and LONGFLOAT are
respectively 32 and 64 bits.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype
using a size specification is its usual size (32 or 64 bits).

Size of the objects of a floating point subtype

An object of a floating point subtype has the same size as its subtype.

Appendix F. Implementation- Dependent Characteristics 13

4.4 Fixed Point Types

Small of a fixed point type

If no specification of small applies to a fixed point type, then the value of small is
determined by the value of delta as defined by RM 3.5.9.

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

Predefined fixed point types

To implement fixed point types, the Alsys compiler for [80x86 machines uses a set of
anonymous predefined types of the form:

type SHORTFIXED Is delta D range (-2.0*07-1)*S .. 2.0"*07S;
for SHORT FIXED'SMALL use S;

type FIXED is delta D range (-2.0**15-1)*S .. 2.0**15S;
for FIXED'SMALL use S;

type LONGFIXED is delta D range (-2.0**31-1)*S .. 2.0O'31lS;
for LONGFIXED'SMALL use S;

where D is any real value and S any power of two less than or equal to D.

Selection of the parent of a fixed point type

A fixed point type declared by a declaration of the form:

type T is delta D range L .. R;

possibly with a small specification:

for T'SMALL use S;

is implicitly derived from a predefined fixed point type. The compiler automatically
selects the predefined fixed point type whose small and delta are the same as the small
and delta of T and whose range is the shortest that includes the values L to R inclusive.

Encoding of fixed point values

In the program generated by the compiler, a safe value V of a fixed point subtype F is
represented as the integer

V / FPBASE'SMALL

14 Alsys 286 DOS ,4da Compiler. Appendix F, Version 4.2

Minimum size of a fixed point subtype

The minimum size of a fixed point subtype is the minimum number of binary digits that
is necessary for representing the values of the range of the subtype using the small of
the base type.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S
being the bounds of the subtype, if i and I are the integer representations of m and M,
the smallest and the greatest model numbers of the base type such that s < m and M < S,
then the minimum size L is determined as follows. For i >= 0, L is the smallest positive
integer such that I <= 2 L_1 . For i < 0, L is the smallest positive integer such that
- 2 L-1 <= i and I <- 2L-1_1.

type F is delta 2.0 range 0.0 .. 500.0;
-- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 .. 250.0;
-- The minimum size of S is 7 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its type mark S).

Size of a fixed point subtype

The sizes of the predefined fixed point types SHORTFIXED, FIXED and
LONGFIXED are respectively 8, 16 and 32 bits.

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the size of the predefined type from which
it derives directly or indirectly. For example:

type S is delta 0.01 range 0.8 .. 1.0;
-- S is derived from an 8 bit predefined fixed type, its size is 8 bits.

type F is delta 0.01 range 0.0 .. 2.0;
-- F is derived from a 16 bit predefined fixed type, its size is 16 bits.

type N Is new F range 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, its size is 16 bits.

When a size specification is applied to a fixed point type, this fixed point type and each
of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value greater than
or equal to the minimum size of the type or subtype to which it applies:

type S is delta 0 01 range 0.8 .. 1.0;
for S'SIZE use 32;
-- S is derived from an 8 bit predefined fixed type, but its size is 32 bits

Appendix F. Implementation-Dependent Char.acteristics 15

-- because of the size specification.

type F is delta 0.01 range 0.0 .. 2.0;
for F'SIZE use 8;
-= F is derived from a 16 bit predefined fixed type, but its size is 8 bits
-- because of the size specification.

type N is new F range 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, but its size is
-- 8 bits because N inherits the size specification of F.

The Alsys compiler fully implements size specifications. Nevertheless, as fixed point
objects are represented using machine integers, the specified length cannot be greater
than 32 bits.

Size of the objects of a fixed point subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.

4.5 Access Types

Collection Size

As described in RM 13.2, a specification of collection size can be provided in order to
reserve storage space for the collection of an access type.

When no STORAGE SIZE specification applies to an access type, no storage space is
reserved for its collection, and the value of the attribute STORAGESIZE is then 0.

STORAGE SIZE clause on collections of unconstrained objects is not supported by the
implementation.

The maximum size allowed for a collection is 64YJbytes.

Encoding of access values.

Access values are machine addresses.

Minimum size of an access subtype

The minimum size of an access subtype is 32 bits.

Size of an access subtype

The size of an access subtype is 32 bits, the same as its minimum size.

16 Alsys 286 DOS Ada Compiler, Appendix F. Version 4.2

The only size that can be specified for an access type using a size specification is its
usual size (32 bits).

Size of an object of an access subtype

An object of an access subtype has the same size as its subtype, thus an object of an
access subtype is always 32 bits long.

4.6 Task Types

Storage for a task activation

When no length clause is used to specify the storage space to be reserved for a task
activation, the storage space indicated at bind time is used for this activation.

As described in RM 13.2, a length clause can be used to specify the storage space for
the activation of each of the tasks of a given type. In this case the value indicated at
bind time is ignored for this task type, and the length clause is obeyed.

It is not allowed to apply such a length clause to a derived type. The same storage space
is reserved for the activation of a task of a derived type as for the activation of a task
of the parent type.

Encoding of task values

Encoding of a task value is not described here.

Minimum size of a task subtype

The minimum size of a task subtype is 32 bits.

Size of a task subtype

The size of a task subtype is 32 bits, the same as its minimum size.

A size specification has no effect on a task type. The only size that can be specified
using such a length clause is its minimum size.

Size of the objects of a task subtype

An object of a task subtype has the same size as its subtype. Thus an object of a task
subtype is always 32 bits long.

Appendix F, Implementation- Dependent Characteristics 17

4.7 Array Types

Layout of an array

Each array is allocated in a contiguous area of storage units. All the components have
the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same size.

*.........-......

Component Gap Component Gap Conpoernt Gap

Components

If the array is not packed, the size of the components is the size of the subtype of the
components:

type A is array (1 .. 8) of BOOLEAN;
-- The size of the ;omponents of A is the size of the type BOOLEAN: 8 bits.

type DECIMAL _DIGIT is range 0 .. 9;
for DECIMALDIGIT'SIZE use 4;
type BINARYCODEDDECIMAL is

array (INTEGER range <>) of DECIMAL DIGIT;
-- The size of the type DECIMAL DIGIT is 4 bits. Thus in an array of
-- type BINARYCODEDDECIMAL each component will be represented on
-- 4 bits as in the usual BCD representation.

If the array is packed and its components are neither records nor arrays, the size of the
components is the minimum size of the subtype of the components:

type A is array (1 .. 8) of BOOLEAN;
pragma PACK(A);
-- The size of the components of A is the minimum size of the type BOOLEAN:
-- I bit.

type DECIMAL _DIGIT is range 0 .. 9;
for DECIMALDIGIT'SIZE use 32;
type BINARYCODEDDECIMAL is

array (INTEGER range <>) of DECIMALDIGIT;
pragma PACK(BINARYCODEDDECIMAL);
-- The size of the type DECIMAL DIGIT is 32 bits, but, as
-- BINARYCODED__DECIMAL is packed, each component of an array of this
-- type will be represented on 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays.

18 Alsys 286 DOS Ada Compiler, Appendix F, Version 4.2

Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
to optimize access to the array components and to their subcomponents. The size of the
gap is chosen so that the relative displacement of consecutive components is a multiple
of the alignment of the subtype of the components. This strategy allows each component
and subcomponent to have an address consistent with the alignment of its subtype:

type R Is
record

K : INTEGER; -- INTEGER is even byte aligned.
B: BOOLEAN; -- BOOLEAN is byte aligned.

end record;
-- Record type R is even byte aligned. Its size is 24 bits.

type A is array (I .. 10) of R;
-- A gap of one byte is inserted after each component in order to respect the
-- alignment of type R. The size of an array of type A will be 320 bits.

Component Gap Comlonent Gap Component Gap

Array of type A: each subcomponent K has an even offset.

If a size specification applies to the subtype of the components or if the array is packed,
no gaps are inserted:

type R Is
record

K: INTEGER;
B: BOOLEAN;

end record;

type A is array (I .. 10) of R;
pragma PACK(A);
-- There is no gap in an array of type A because
-- A is packed.
-- The size of an object of type A will be 240 bits.

type NR Is new R;
for NR'SIZE use 24;

type B is array (I .. 10) of NR;
-- There is no gap in an array of type B because

Appendix F. Implementation- Dependent Characteristics 19

-- NR has a size specification.
-- The size of an object of type B will be 240 bits.

Cwponent Conponent

Array of type A or B: a subcomponent K can have an odd offset.

Size of an array subtype

The size of an array subtype is obtained by multiplying the number of its components
by the sum of the size of the components and the size of the gaps (if any). If the
subtype is unconstrained, the maximum number of components is considered.

The size of an array subtype cannot be computed at compile time

" if it has non-static constraints or is an unconstrained array type with non-
static index subtypes (because the number of components can then only be
determined at run time).

" if the components are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static (because the size of
the components and the size of the gaps can then only be determined at run
time).

As has been indicated above, the effect of a pragma PACK on an array type is to
suppress the gaps and to reduce the size of the components. The consequence of packing
an array type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys compiler.

A size specification applied to an array type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of an array is as expected by
the application.

Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of
the object.

20 Alsys 286 DOS Ada Compiler. Appendix F. Version 4.2

4.8 Record Types

Layout of a record

Each record is allocated in a contiguous area of storage units. The size ot a record
component depends on its type. Gaps may exist between some components.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in RM 13.4. In the Alsys
implementation for 180x86 machines there is no restriction on the position that can be
specified for a component of a record. If a component is not a record or an array, its
size can be any size from the minimum size to the size of its subtype. If a component is
a record or an array, its size must be the size of its subtype:

type INTERRUPT MASK Is array (0 .. 2) of BOOLEAN;
pragma PACK(INTERRUPT MASK);
-- The size of INTERRUPTMASK is 3 bits.

type CONDITIONCODE is 0 .. 1;
-- The size of CONDITIONCODE is 8 bits, its minimum size is 1 bit.

type STATUS BIT is new BOOLEAN;
for STATUS BIT'SIZE use 1;
-- The size and the minimum size of STATUSBIT are I bit.

SYSTEM : constant := 0;
USER : constant := 1;

type STATUS REGISTER is
record

T: STATUS_BIT; -- Trace
S: STATUS_BIT; -- Supervisor
I: INTERRUPT MASK; -- Interrupt mask
X : CONDITION-CODE; -- Extend
N: CONDITION-CODE; -- Negative
Z: CONDITION-CODE; -- Zero
V : CONDITION-CODE; -- Overflow
C: CONDITION-CODE; -- Carry

end record;

for STATUS REGISTER use
record at mod 2;

T at SYSTEM range 0 .. 0;
S at SYSTEM range 2 .. 2;
I at SYSTEM range 5 .. 7;
X at USER range 3 .. 3;
N at USER range 4 .. 4;
Z at USER range 5 .. 5;
V at USER range 6 .. 6;
C at USER range 7 .. 7;

end record;

Appendix F, Implementation-Dependent Characteristics 21

A record representation clause need not specify the position and the size for every

component.

Pragma PACK has no effect on records.

If no component clause applies to a component of a record, its size is the size of its
subtype. Its position is chosen by the compiler so as to optimize access to the
components of the record: the offset of the component is chosen as a multiple of 8 bits
if the objects of the component subtype are usually byte aligned, but a multiple of 16
bits if these objects are usually even byte aligned. Moreover, the compiler chooses the
position of the component so as to reduce the number of gaps and thus the size of the
record objects.

Because of these optimizations, there is no connection between the order of the
components in a record type declaration and the positions chosen by the compiler for
the components in a record object.

Indirect components

If the offset of a component cannot be computed at compile time, this offset is stored in
the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are said to be direct.

Segiming of the record

Compile time offset
DIRECT

Compile time offset
OFFSET

Run time offset

INO IRECT

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated
at run time and may even depend on the discriminants of the record. We will call these
components dynamic components:

type DEVICE Is (SCREEN, PRINTER);

22 Alsys 286 DOS Ada Compiler, Appendix F, Version 4.2

type COLOR Is (GREEN, RED, BLUE);

type SERIES Is array (POSITIVE range <>) of INTEGER;

type GRAPH (L: NATURAL) is
record

X: SERIES(I .. L); -- The size of X depends on L
Y: SERIES(] L); -- The size of Y depends on L

end record;

Q: POSITIVE;

type PICTURE (N: NATURAL; D: DEVICE) is
record

F: GRAPH(N); -- The size of F depends on N
S : GRAPH(Q); -- The size of S depends on Q
case D is

when SCREEN =>
C: COLOR;

when PRINTER =>
null;

end case;
end record;

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order to minimize the number- of
indirect components, the compiler groups the dynamic components together and places
them at the end of the record:

0 z SCREEN 0 PRINTER
N=2 Nl

Beginning of the record -
S OFFSET S OFFSET

F OFFSET.,ou.i.e-time offsets F , r, SE

Run time offsets

7--

I

- *m I m

The record type PICTURE: F and S are placed at the end of the record

Because of this approach, the only indirect components are dynamic components. But
not all dynamic components are necessarily indirect: if there are dynamic components in
a component list which is not followed by a variant part, then exactly one dynamic
component of this list is a direct component because its offset can be computed at
compilation time (the only dynamic components that are direct components are in this
8situation):

24 Alsys 286 DOS Ada Compiler, Appendix F, Version 4.2

Beginning of the record
Y OFFSET

Compite time offset
L

-ICompite time offset

X Size dependent on discriminant L

j-- Run time offset

Sizdependent on discriminant L

The record type GRAPH: the dynamic component X' is a direct component.

The offset of an indirect component is always expressed in storage urits.

The space reserved for the offset of an indirect component must be large enough to
store the size of any value of the record type (the maximum potential offset). The
compiler evaluates an upper bound MS of this size and treats an offset as a component
having an anonymous integer type whose range is 0 .. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name C'OFFSET.

Implicit components

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant values. To avoid useless
recomputation the compiler stores this information in the record objects, updates it
when the values of the discriminants are modified and uses it when the objects or its
components are accessed. This information is stored in special components called implicit
components.

An implicit component may contain information which is used when the record object
or several of its components are accessed. In this case the component will be included in
any record object (the implicit component is considered to be declared before any
variant part in the record type declaration). There can be two components of this kind;
one is called RECORDSIZE and the other VARIANTINDEX.

On the other hand an implicit component may be used to access a given record
component. In that case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are called ARRAYDESCRIPTORs or
RECORDDESCRIPTORs.

Appendix F. Implementation- Dependent Characteristics 25

4.8.1 RECORDSIZE

This implicit component is created by the compiler when the record type has a variant
part and its discriminants are defaulted. It contains the size of the storage space
necessary to store the current value of the record object (note that the storage
effectively allocated for the record object may be more than this).

The value of a RECORD_SIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORDSIZE must be large enough to store the maximum
size of any value of the record type. The compiler evaluates an upper bound MS of this
size and then considers the implicit component as having an anonymous integer type
whose range is 0 .. MS.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'RECORDSIZE.

4.8.2 VARIANTINDEX

This implicit component is created by the compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used
when a discriminant check is to be done.

Component lists that do not contain a variant part are numbered. These numbers are the

possible values of the implicit component VARIANTINDEX.

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND: VEHICLE := CAR) is
record

SPEED: INTEGER;
case KIND is

when AIRCRAFT I CAR =>
WHEELS: INTEGER;
case KIND is

when AIRCRAFT => -- I
WINGSPAN: INTEGER;

when others => -- 2
null;

end case;
when BOAT => -- 3

STEAM : BOOLEAN;
when ROCKET -> -- 4

STAGES: INTEGER;
end case;

end record;

26 Alsys 286 DOS Ada Compiler, Appendix F, Version 4.2

The value of the variant index indicates the set of components that are present in a
record value:

Variant Index Set

I (KIND, SPEED, WHEELS, WINGSPAN)
2 (KIND, SPEED, WHEELS)
3 (KIND, SPEED, STEAM)
4 (KIND, SPEED, STAGES)

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Ccaponent Interval

KIND
SPEED --

WHEELS 1 .. 2
WINGSPAN 1 .. 1
STEAM 3 .. 3
STAGES 4 .. 4

The implicit component VARIANT INDEX must be large enough to store the number
V of component lists that don't contain variant parts. The compiler treats this implicit
component ds having an anonymous integer type whose range is I .. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'VARIANTINDEX.

4.8.3 ARRAYDESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains informatior about the component subtype.

The structure of an implicit component of kind ARRAYDESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The compiler treats an implicit component of the kind ARRAYDESCRIPTOR as
having an anonymous array type. If C is the name of the record component whose
subtype is described by the array descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'ARRAYDESCRIPTOR.

Appendix F, Implementation- Dependent Characteristics 27

4.8.4 RECORDDESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORD DESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The compiler treats an implicit component of the kind RECORD DESCRIPTOR as
having an anonymous array type. If C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'RECORDDESCRIPTOR.

Suppression of implicit components

The Alsys implementation provides the capability of suppressing the implicit components
RECORDSIZE and/or VARIANTINDEX from a record type. This can be done using
an implementation defined pragma called IMPROVE. The syntax of this pragma is as
follows:

pragma IMPROVE (TIME I SPACE , [ON =>] simple name);

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the compiler inserts implicit components as described above. If on
the other hand SPACE is specified, the compiler only inserts a VARIANTINDEX or a
RECORDSIZE.

component if this component appears ia a record representation clause that applies to the
record type. A record representation clause can thus be used to keep one implicit
component while suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere that a
representation clause is allowed for this type.

Size of a record subtype

Unless a component clause specifies that a component of a record type has an offset or a
size which cannot be expressed using storage units, the size of a record subtype is
rounded up to a whole number of storage units.

The size of a constrained record subtype is obtained by adding the sizes of its
components and the sizes of its gaps (if any). This size is not computed at compile time

28 Alsys 286 DOS Ada Compiler. Appendix F. Version 4.2

a when the record subtype has non-static constraints,

a when a component is an array or a record and its size is not computed at
compile time.

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated exactly at compile time an upper bound of
this size is used by the compiler to compute the subtype size.

A size specification applied to a record type or first named subtype has no effect. The
only size that can be specified using such a-length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of a record is as expected by
the application.

Size of an object of a record subtype

An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this
size is less than or equal to 8 kb. If the size of the subtype is greater than this, the
object has the size necessary to store its current value; storage space is allocated and
released as the discriminants of the record change.

5 Conventions for Implementation-Generated Names
The Alsys 286 DOS Ada Compiler may add fields to record objects and have descriptors
in memory for record or array objects. These fields are not accessible to the user
through any implementation-generated name or attribute.

The following predefined packages are reserved to Alsys and cannot be recompiled in
Version 4.2:

ALSYS ADA RUNT IME

ALSYSASI CZO
ALSYSBAS I CDI RECT 10
ALSYS BASIC SEQUENTIALO

6 Address Clauses

6.1 Address Clauses for Objects
An address clause can be used to specify an address for an object as described in RM
13.5. When such a clause applies to an object no storage is allocated for it in the
program gererated by the compiler. The program accesses the object using the address
specified in the clause.

Appendix F. Implementation -Dependent Characteristics 29

An address clause is not allowed for task objects, for unconstrained records whose size is
greater than 8 kb., or for a constant.

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current version of the
compiler.

6.3 Address Clauses for Entries

Address clauses for entries are not implemented in the current version of the compiler.

7 Restrictions on Unchecked Conversions

Unchecked conversions are allowed between any types. It is the programmer's re-
sponsibility to determine if the desired effect is achieved.

8 Input-Output Packages

The RM defines the predefined input-output packages SEQUENTIAL_IO,
DIRECT 10, and TEXT_10, and describes how to use the facilities available within
these packages. The RM also defines the package 10_EXCEPTIONS, which specifies
the exceptions that can be raised by the predefined input-output packages.

In addition the RM outlines the package LOWLEVEL_10, which is concerned with
low-level machine-dependent input-output, such as would possibly be used to write de-
vice drivers or access device registers. LOW LEVEL 10 has not been implemented.
The use of interfaced subprograms is recommended as an alternative.

8.1 Correspondence between External Files and 286 DOS Files

Ada input-output is defined in terms of external files. Data is read from and written to
external files. Each external file is implemented as a standard 286 DOS file, including
the use of STANDARDINPUT and STANDARDOUTPUT.

The name of an external file can be either

" the null string

" an 286 DOS filename

" an 286 DOS special file or device name (for example, CON and PRN)

If the name is a null string, the associated external file is a temporary file and will cease
to exist when the program is terminated. The file will be placed in the current dir-
ectory and its name will be chosen by 286 DOS.

30 Alsys 286 DOS Ada Compiler, Appendix F, Version 4.2

If the name is an 286 DOS filename, the filename will be interpreted according to stan-
dard 286 DOS conventions (that is, relative to the current directory). The exception
NAMEERROR is raised if the name part of the filename has more than 8 characters
or if the extension part has more than 3 characters.

If an existing 286 DOS file is specified to the CREATE procedure, the contents of the
file will be deleted before writing to the file.

If a non-existing directory is specified in a file path name to CREATE, the directory
will not be created, and the exception NAMEERROR is raised.

8.2 Error Handling
286 DOS errors are translated into Ada exceptions, as defined in (he RM by package
10 EXCEPTIONS. In particular, DEVICE ERROR is raised in cases of drive not
ready, unknown media, disk full or hardware errors on the disk (such as read or write
fault).

8.3 The FORM Parameter

The form parameter is a string, formed from a list of attributes, with attributes sep-
arated by commas. The string is not case sensitive. The attributes specify:

E Buffering

BUFFERSIZE => size inbytes

S Appending

APPEND -> YES I NO

* Truncation of the name by 286 DOS

TRUNCATE => YES I NO

where:

BUFFERSIZE: Controls the size of the internal buffer. This option is not sup-
ported for DIRECT 10. The default value is 1024. This option has no effect
when used by TEXT_ 10 with an external file that is a character device, in which
case the size of the buffer will be 0.

APPEND- If YES output is appended to the end of the existing file. If NO out-
put overwrites the existing file. This option is not supported for DIRECT_10.
The default is NO.

TRUNCATE: If YES the file name will be automatically truncated if it is bigger
than 8 characters. The default value is NO, meaning that the exception
NAMEERROR will be raised if the name is too long.

Appendix F. Implementation- Dependent Characteristics 31

The exception USE ERROR is raised if the form STRING in not correct or if a non

supported attribute for a given package is used.

Example:

FORM => 'TRUNCATE -. > YES. APPEND _> YES, BUFFERSIZE =.> 20480"

8.4 Sequential Files

For sequential access the file is viewed as a sequence of values that are transferred in
the order of their appearance (as produced by the program or run-time environment).
This is sometimes called a stream file in other operating systems. Each object in a se-
quential file has the same binary representation as the Ada object in the executable pro-
gram.

8.5 Direct Files

For direct access the file is viewed as a set of elements occupying consecutive positions
in a linear order. The position of an element in a direct file is specified by its index,
which is an integer of subtype POSITIVECOUNT.

DIRECT 10 only allows input-output for constrained types. If DIRECT 10 is in-
stantiated for an unconstrained type, all calls to CREATE or OPEN will raise
USE ERROR. Each object in a direct file will have the same binary representation as
the Ada object in the executable program. All elements within the file will have the
same length.

8.6 Text Files

Text files are used for the input and output of information in ASCII character form.
Each text file is a sequence of characters grouped into lines, and lines are grouped into
a sequence of pages.

All text file column numbers, line numbers, and page numbers are values of the subtype
POSITIVECOUNT.

Note that due to the definitions of line terminator, page terminator, and file terminator
in the RM, and the method used to mark the end of file under 286 DOS, some ASCII
files do not represent well-formed TEXT 10 files.

A text file is buffered by the Runtime Executive unless

" it names a device (for example, CON or PRN).

" it is STANDARDINPUT or STANDARDOUTPUT and has not been
redirected.

32 Alsys 286 DOS Ada Compiler, Appendix F. Version 4.2

If not redirected, prompts written to STANDARD OUTPUT with the procedure PUT
will appear before (or when) a GET (or GET_LINE) occurs.

The functions ENDOFPAGE and ENDOFFILE always return FALSE when the
file is a device, which includes the use of the file CON, and STANDARD INPUT
when it is not redirected. Programs which would like to check for end of file when the
file may be a device should handle the exception ENDERROR instead, as in the fol-
lowing example:

Example

begin
loop

-- Display the prompt
TEXTIO.PUT ("--> ");
-- Read the next line:
TEXT IO.GETLINE (COMMAND, LAST);
-- Now do something with COMMAND (I .. LAST)

end !cop;
exception

when TEXTIO.ENDERROR =>
null;

end;

END ERROR is raised for STANDARDINPUT when AZ (ASCII.SUB) is entered at
the keyboard.

8.7 Access Protection of External Files
All 286 DOS access protections exist when using files under 286 DOS. If a file is open
for read only access by one process it can not be opened by another process for
read/write access.

8.8 The Need to Close a File Explicitly
The Runtime Executive will flush all buffers and close all open files when the program is
terminated, either normally or through some exception.

However, the RM does not define what happens when a program terminates without
closing all the opened files. Thus a program which depends on this feature of the
Runtime Executive might have problems when ported to another system.

8.9 Limitation on the procedure RESET
An internal file opened for input cannot be RESET for output. However, an internal
file opened for output can be RESET for input, and can subsequently be RESET back
to output.

Appendix F. Implementation-Dependent Characteristics 33

8.10 Sharing of External Files and Tasking Issues

Several internal files can be associated with the same external file only if all the internal
files are opened with mode IN _MODE. . However, if a file is opened with mode
OUTMODE and then changed to INMODE with the RESET procedure, it cannot be
shared.

Care should be taken when performing multiple input-output operations on an external
file during tasking because the order of calls to the I/O primitives is unpredictable. For
example, two strings output by TEXT IO.PUTLINE in two different tasks may ap-
pear in the output file with interleaved characters. Synchronization of I/O in cases such
as this is the user's responsibility.

The TEXT 10 files .i.STANDARDINPUT;STANDARDINPUT and
.i.STANDARDOUTPUT;STANDARDOUTPUT are shared by all tasks of an Ada
program.

If TEXT IO.STANDARD INPUT is not redirected, it will not block a program on in-
put. All tasks not waiting for input will continue running.

9 Characteristics of Numeric Types

9.1 Integer Types

The ranges of values for integer types declared in package STANDARD are as follows:

SHORT-INTEGER -128 .. 127 2**7 - 1

INTEGER -32768 .. 32767 -- 2"*15 - 1

LONG INTEGER -2147483648 .. 2147483647 -- 2'31 - 1

For the packages DIRECT _10 and TEXT_10, the range of values for types COUNT
and POSITIVECOUNT are as follows:

COUNT 0 .. 2147483647 -- 2*'31 1

POSITIVE COUNT 1 .. 2147483647 - 2**31 - 1

For the package TEXT_10, the range cf values for the type FIELD is as follows:

FIELD 0 .. 255 -- 2**8 - 1

9.2 Floating Point Type Attributes

FLOAT LONG-FLOAT

DIGITS 6 15

34 Alsys 286 DOS Ada Compiler. Appendix F, Version 4.2

MANTISSA 21 51

EMAX 84 204

EPSILON 9.53674E-07 8.88178E-16

LARGE 1.93428E+25 2.57110E+61

SAFEEMAX 125 1021

SAFE_SMALL 1.17549E-38 2.22507E-308

SAFE-LARGE 4.25353E*37 2.24712E+307

FIRST -3.40282E+38 -1.79769E+308

LAST 3.40282E+38 1.79769E+308

MACHINERADIX 2 2

MACHINEEMAX 128 1024

MACHINEEMIN -125 -1021

MACHI NEROUNDS true true

MACHINE OVERFLOWS faLse faLse

SIZE 32 64

9.3 Attributes of Type DURATION

DURATION'DELTA 0.001

OURATION'SMALL 0.0009765625 (z 2**(-10))

DURATION'FIRST -2097152.0

DURATION'LAST 2097151.999

OURATIOi'ILARGE same as DURATION'LAST

10 Other Implementation-Dependent Characteristics

10.1 Use of the Floating-Point Coprocessor (80287)

Appendix F. Implementation-Dependent Characteristics 35

The Alsys 286 DOS Ada Compiler generates instructions to use the floating point copro-
cessor for all floating point operations (but, of course, not for operations involving only
universalreal).

A floating point coprocessor, 80287, is required for the execution of programs that use
arithmetic on floating point values. The coprocessor is needed if the FLOAT_10 or
FIXED 10 packages of TEXT_10 are used.

The Runtime Executive will detect the absence of the floating point coprocessor if it is
required by a program and will raise NUMERICERROR.

10.2 Characteristics of the Heap

UNCHECKED DEALLOCATION is implemented for all Ada access objects except
access objects to tasks. Use of UNCHECKED _DEALLOCATION on a task object will
lead to unpredictable results.

All objects whose visibility is linked to a subprogram, task body, or block have their
storage reclaimed at exit.

The maximum size of the heap is limited only by available memory. This includes the
amount of physical memory (RAM) and the amount of virtual memory (hard disk swap
space).

All objects created by allocators go into the heap. Also, portions of the Runtime Execu-
tive representation of task objects, including the task stacks, are allocated in the heap.

10.3 Characteristics of Tasks

The default task stack size is 1K bytes (32K bytes for the environment task), but by
using the Binder option STACK.TASK the size for all task stacks in a program may be
set to a size from I K bytes to 64K bytes.

Normal priority rules are followed for preemption, where PRIORITY values are in the
range 1 .. 10. A task with undefined priority (no pragma PRIORITY) is considered to
be lower than priority 1.

The maximum number of active tasks is restricted only by memory usage.

The accepter of a rendezvous executes the accept body code in its own stack. Ren-
dezvous with an empty accept body (for synchronization) does not cause a context
switch.

The main program waits for completion of all tasks dependent upon library packages
before terminating.

Abnormal completion of an aborted task takes place immediately, except when the ab-
normal task is the caller of an entry that is engaged in a rendezvous, or if it is in the

36 Alsys 286 DOS Ada Compiler. Appendix F, Version 4.2

process of activating some tasks. Any such task becomes abnormally completed as soon

as the state in question is exited.

The message

GLOBAL BLOCKING SITUATION DETECTED

is printed to STANDARD _OUTPUT when theRuntime Executivedetects that no further
progress is possible for any task in the program. The execution of the program is then
abandoned.

10.4 Definition of a Main Subprogram

A library unit can be used as a main subprogram if and only if it is a procedure that is
not generic and that has no formal parameters.

10.5 Ordering of Compilation Units

The Alsys 286 DOS Ada Compiler imposes no additional ordering constraints on com-
pilations beyond those required by the language.

11 Limitations

11.1 Compiler Limitations

" The maximum identifier length is 255 characters.

" The maximum line length is 255 characters.

" The maximum number of unique identifiers per compilation unit is 2500.

11.2 Hardware Related Limitations

d The maximum size of the generated code for a single compilation unit is
65535 bytes.

a The maximum size of a single array or record object is 65522 bytes. The
-maximum size of a static record is 4096 bytes. V

2 The maximum size of a single stack frame is 32766 bytes, including the data
for inner package subunits unnested to the parent frame.

a The maximum amount of data in the global data area is 65535 bytes, in-
cluding compiler generated data that goes into the GDA (about 8 bytes per
compilation unit plus 4 bytes per externally visible subprogram).

Appendix F, Implementation-Dependent Characteristics 37

* The maximum amount of data in the heap is limited only by available mem-

ory, real and virtual.

38 Alsys 286 DOS Ada Compiler, Appendix F. Version 4.2

INDEX

286 DOS conventions 31 Drive not ready 31
286 DOS errors 31 DURATION'DELTA 35
286 DOS files 30 DURATION'FIRST 35
286 DOS special file 30 DURATION'LARGE 35
80287 36 DURATION'LAST 35

DURATION'SMALL 35
Abnormal completion 36
Aborted task 36 EMAX 35
Access protection 33 Empty accept body 36
Allocators 36 END ERROR 33
APPEND 31 END__QFFILE 33
Application Developer's Guide 2 END OF PAGE 33
Array objects 29 EPSILON 35
Array subtype 4 Errors
Array type 4 disk full 31
ASSIGNTO__ADDRESS 8 drive not ready 31
Attributes of type DURATION 35 hardware 31

unknown media 31
Binder 36
BUFFERSIZE 31 FETCHFROMADDRESS 8
Buffered files 32 FIELD 34
Buffers File closing

flushing 33 explicit 33
File names 30

Characteristics of tasks 36 File terminator 32
Column numbers 32 FIRST 35
Compiler limitations 37 FIXED 10 36

maximum identifier length 37 FLOAT 10 36
maximum line length 37 Floating point coprocessor 36
maximum number of compilation Floating point operations 36

units 37 Floating point type attributes 34
maximum number of unique FORM parameter 31

identifiers 37
Constrained types GET 33

I/O on 32 GETLINE 33
Control Z 33 GLOBAL BLOCKING SITUATION
COUNT 34 DETECTED 37
CREATE 31, 32

Hardware errors 31
Device name 30 Hardware limitations
DEVICE ERROR 31 maximum amount of data in the
DIGITS 34 global data area 37
Direct files 32 maximumn data in the heap 38
DIRECT_10 30, 32, 34 maximum size of a single array or
Disk full 31 record object 37
DOS Linker 3

Index 39

maximum size of a single stack frame Maximum size of the generated code 37
37

maximum size of the generated code NAME _ERROR 31
37 Non-blocking I/O 34

Hardware related limitations 37 Number of active tasks 36
Heap 36 NUMERICERROR 36

I/O synchronization 34 OPEN 32
IBM Macro Assembler 3 Ordering of compilation units 37
Implementation generated names 29 OUTMODE 34
IN MODE 34
Integer types 34 P'IS__ARRAY 4
Intel object module format 3 Page numbers 32
INTERFACE 2, 3 Page terminator 32
INTERFACE NAME 2, 3 Parameter passing 1
Interfaced subprograms 30 POSITIVE COUNT 32, 34
Interleaved characters 34 Pragma IMPROVE 4
10_EXCEPTIONS 30, 31 Pragma INDENT 3

Pragma INTERFACE 2, 3
LARGE 35 Pragma INTERFACENAME 2, 3
LAST 35 Pragma PACK 4
Legal file names 30 Pragma PRIORITY 4, 36
Library unit 37 Pragma SUPPRESS 4
Limitations 37 Predefined packages 29
Line numbers 32 PRIORITY 4, 36
Line terminator 32 PUT 33
LONG INTEGER 34 PUTLINE 34
LOWLEVELIO 30

Record objects 29
MACHINE EMAX 35 Rendezvous 36
MACHINE EMIN 35 RESET 33, 34
MACHINEMANTISSA 35 Runtime Executive 1, 3, 32, 33, 36, 37
MACHINE OVERFLOWS 35
MACHINE RADIX 35 SAFE EMAX 35
MACHINE ROUNDS 35 SAFELARGE 35
Main program 36 SAFESMALL 35
Main subprogram 37 Sequential files 32
MANTISSA 35 SEQUENTIALIO 30
Maximum amount of data in the global Sharing of external files 34

data area 37 SHORTINTEGER 34
Maximum data in the heap 38 SIZE 35
Maximum identifier length 37 STANDARDINPUT 30, 32, 33
Maximum line length 37 STANDARDOUTPUT 30, 32, 33, 37
Maximum number of compilation units Storage reclamation at exit 36

37 Stream file 32
Maximum number of unique identifiers SUPPRESS 4

37 Synchronization of I/O 34
Maximum size of a single array or SYSTEM 4

record object 37
Maximum size of a single stack frame Task stack size 36

37 Task stacks 36

40 Alsys 286 DOS Ada Compiler. Appendix F, Version 4.2

Tasking issues 34
Tasks

characteristics of 36
Text file

buffered 32
Text files 32
TEXT 10 30, 34
TRUNCATE 31

Unchecked conversions 30
UNCHECKEDDEALLOCATION 36
Universal real 36
Unknown media 31
USEERROR 32

Index 41

